mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-04-22 21:59:55 +08:00
237 lines
9.0 KiB
Python
237 lines
9.0 KiB
Python
import json
|
|
import os
|
|
import time
|
|
import uuid
|
|
from collections.abc import Generator
|
|
from unittest.mock import MagicMock
|
|
|
|
import pytest
|
|
|
|
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
|
|
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
|
|
from core.entities.provider_entities import CustomConfiguration, CustomProviderConfiguration, SystemConfiguration
|
|
from core.model_manager import ModelInstance
|
|
from core.model_runtime.entities.model_entities import ModelType
|
|
from core.model_runtime.model_providers import ModelProviderFactory
|
|
from core.workflow.entities.variable_pool import VariablePool
|
|
from core.workflow.enums import SystemVariableKey
|
|
from core.workflow.graph_engine.entities.graph import Graph
|
|
from core.workflow.graph_engine.entities.graph_init_params import GraphInitParams
|
|
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
|
|
from core.workflow.nodes.event import RunCompletedEvent
|
|
from core.workflow.nodes.llm.node import LLMNode
|
|
from extensions.ext_database import db
|
|
from models.enums import UserFrom
|
|
from models.provider import ProviderType
|
|
from models.workflow import WorkflowNodeExecutionStatus, WorkflowType
|
|
|
|
"""FOR MOCK FIXTURES, DO NOT REMOVE"""
|
|
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
|
|
from tests.integration_tests.workflow.nodes.__mock.code_executor import setup_code_executor_mock
|
|
|
|
|
|
def init_llm_node(config: dict) -> LLMNode:
|
|
graph_config = {
|
|
"edges": [
|
|
{
|
|
"id": "start-source-next-target",
|
|
"source": "start",
|
|
"target": "llm",
|
|
},
|
|
],
|
|
"nodes": [{"data": {"type": "start"}, "id": "start"}, config],
|
|
}
|
|
|
|
graph = Graph.init(graph_config=graph_config)
|
|
|
|
init_params = GraphInitParams(
|
|
tenant_id="1",
|
|
app_id="1",
|
|
workflow_type=WorkflowType.WORKFLOW,
|
|
workflow_id="1",
|
|
graph_config=graph_config,
|
|
user_id="1",
|
|
user_from=UserFrom.ACCOUNT,
|
|
invoke_from=InvokeFrom.DEBUGGER,
|
|
call_depth=0,
|
|
)
|
|
|
|
# construct variable pool
|
|
variable_pool = VariablePool(
|
|
system_variables={
|
|
SystemVariableKey.QUERY: "what's the weather today?",
|
|
SystemVariableKey.FILES: [],
|
|
SystemVariableKey.CONVERSATION_ID: "abababa",
|
|
SystemVariableKey.USER_ID: "aaa",
|
|
},
|
|
user_inputs={},
|
|
environment_variables=[],
|
|
conversation_variables=[],
|
|
)
|
|
variable_pool.add(["abc", "output"], "sunny")
|
|
|
|
node = LLMNode(
|
|
id=str(uuid.uuid4()),
|
|
graph_init_params=init_params,
|
|
graph=graph,
|
|
graph_runtime_state=GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter()),
|
|
config=config,
|
|
)
|
|
|
|
return node
|
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
|
def test_execute_llm(setup_openai_mock):
|
|
node = init_llm_node(
|
|
config={
|
|
"id": "llm",
|
|
"data": {
|
|
"title": "123",
|
|
"type": "llm",
|
|
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
|
|
"prompt_template": [
|
|
{"role": "system", "text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}."},
|
|
{"role": "user", "text": "{{#sys.query#}}"},
|
|
],
|
|
"memory": None,
|
|
"context": {"enabled": False},
|
|
"vision": {"enabled": False},
|
|
},
|
|
},
|
|
)
|
|
|
|
credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
|
|
|
|
provider_instance = ModelProviderFactory().get_provider_instance("openai")
|
|
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
|
|
provider_model_bundle = ProviderModelBundle(
|
|
configuration=ProviderConfiguration(
|
|
tenant_id="1",
|
|
provider=provider_instance.get_provider_schema(),
|
|
preferred_provider_type=ProviderType.CUSTOM,
|
|
using_provider_type=ProviderType.CUSTOM,
|
|
system_configuration=SystemConfiguration(enabled=False),
|
|
custom_configuration=CustomConfiguration(provider=CustomProviderConfiguration(credentials=credentials)),
|
|
model_settings=[],
|
|
),
|
|
provider_instance=provider_instance,
|
|
model_type_instance=model_type_instance,
|
|
)
|
|
model_instance = ModelInstance(provider_model_bundle=provider_model_bundle, model="gpt-3.5-turbo")
|
|
model_schema = model_type_instance.get_model_schema("gpt-3.5-turbo")
|
|
assert model_schema is not None
|
|
model_config = ModelConfigWithCredentialsEntity(
|
|
model="gpt-3.5-turbo",
|
|
provider="openai",
|
|
mode="chat",
|
|
credentials=credentials,
|
|
parameters={},
|
|
model_schema=model_schema,
|
|
provider_model_bundle=provider_model_bundle,
|
|
)
|
|
|
|
# Mock db.session.close()
|
|
db.session.close = MagicMock()
|
|
|
|
node._fetch_model_config = MagicMock(return_value=(model_instance, model_config))
|
|
|
|
# execute node
|
|
result = node._run()
|
|
assert isinstance(result, Generator)
|
|
|
|
for item in result:
|
|
if isinstance(item, RunCompletedEvent):
|
|
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
|
assert item.run_result.process_data is not None
|
|
assert item.run_result.outputs is not None
|
|
assert item.run_result.outputs.get("text") is not None
|
|
assert item.run_result.outputs.get("usage", {})["total_tokens"] > 0
|
|
|
|
|
|
@pytest.mark.parametrize("setup_code_executor_mock", [["none"]], indirect=True)
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
|
def test_execute_llm_with_jinja2(setup_code_executor_mock, setup_openai_mock):
|
|
"""
|
|
Test execute LLM node with jinja2
|
|
"""
|
|
node = init_llm_node(
|
|
config={
|
|
"id": "llm",
|
|
"data": {
|
|
"title": "123",
|
|
"type": "llm",
|
|
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
|
|
"prompt_config": {
|
|
"jinja2_variables": [
|
|
{"variable": "sys_query", "value_selector": ["sys", "query"]},
|
|
{"variable": "output", "value_selector": ["abc", "output"]},
|
|
]
|
|
},
|
|
"prompt_template": [
|
|
{
|
|
"role": "system",
|
|
"text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}",
|
|
"jinja2_text": "you are a helpful assistant.\ntoday's weather is {{output}}.",
|
|
"edition_type": "jinja2",
|
|
},
|
|
{
|
|
"role": "user",
|
|
"text": "{{#sys.query#}}",
|
|
"jinja2_text": "{{sys_query}}",
|
|
"edition_type": "basic",
|
|
},
|
|
],
|
|
"memory": None,
|
|
"context": {"enabled": False},
|
|
"vision": {"enabled": False},
|
|
},
|
|
},
|
|
)
|
|
|
|
credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
|
|
|
|
provider_instance = ModelProviderFactory().get_provider_instance("openai")
|
|
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
|
|
provider_model_bundle = ProviderModelBundle(
|
|
configuration=ProviderConfiguration(
|
|
tenant_id="1",
|
|
provider=provider_instance.get_provider_schema(),
|
|
preferred_provider_type=ProviderType.CUSTOM,
|
|
using_provider_type=ProviderType.CUSTOM,
|
|
system_configuration=SystemConfiguration(enabled=False),
|
|
custom_configuration=CustomConfiguration(provider=CustomProviderConfiguration(credentials=credentials)),
|
|
model_settings=[],
|
|
),
|
|
provider_instance=provider_instance,
|
|
model_type_instance=model_type_instance,
|
|
)
|
|
|
|
model_instance = ModelInstance(provider_model_bundle=provider_model_bundle, model="gpt-3.5-turbo")
|
|
model_schema = model_type_instance.get_model_schema("gpt-3.5-turbo")
|
|
assert model_schema is not None
|
|
model_config = ModelConfigWithCredentialsEntity(
|
|
model="gpt-3.5-turbo",
|
|
provider="openai",
|
|
mode="chat",
|
|
credentials=credentials,
|
|
parameters={},
|
|
model_schema=model_schema,
|
|
provider_model_bundle=provider_model_bundle,
|
|
)
|
|
|
|
# Mock db.session.close()
|
|
db.session.close = MagicMock()
|
|
|
|
node._fetch_model_config = MagicMock(return_value=(model_instance, model_config))
|
|
|
|
# execute node
|
|
result = node._run()
|
|
|
|
for item in result:
|
|
if isinstance(item, RunCompletedEvent):
|
|
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
|
assert item.run_result.process_data is not None
|
|
assert "sunny" in json.dumps(item.run_result.process_data)
|
|
assert "what's the weather today?" in json.dumps(item.run_result.process_data)
|