mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-04-23 22:29:49 +08:00

Signed-off-by: yihong0618 <zouzou0208@gmail.com> Signed-off-by: -LAN- <laipz8200@outlook.com> Signed-off-by: xhe <xw897002528@gmail.com> Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: takatost <takatost@gmail.com> Co-authored-by: kurokobo <kuro664@gmail.com> Co-authored-by: Novice Lee <novicelee@NoviPro.local> Co-authored-by: zxhlyh <jasonapring2015@outlook.com> Co-authored-by: AkaraChen <akarachen@outlook.com> Co-authored-by: Yi <yxiaoisme@gmail.com> Co-authored-by: Joel <iamjoel007@gmail.com> Co-authored-by: JzoNg <jzongcode@gmail.com> Co-authored-by: twwu <twwu@dify.ai> Co-authored-by: Hiroshi Fujita <fujita-h@users.noreply.github.com> Co-authored-by: AkaraChen <85140972+AkaraChen@users.noreply.github.com> Co-authored-by: NFish <douxc512@gmail.com> Co-authored-by: Wu Tianwei <30284043+WTW0313@users.noreply.github.com> Co-authored-by: 非法操作 <hjlarry@163.com> Co-authored-by: Novice <857526207@qq.com> Co-authored-by: Hiroki Nagai <82458324+nagaihiroki-git@users.noreply.github.com> Co-authored-by: Gen Sato <52241300+halogen22@users.noreply.github.com> Co-authored-by: eux <euxuuu@gmail.com> Co-authored-by: huangzhuo1949 <167434202+huangzhuo1949@users.noreply.github.com> Co-authored-by: huangzhuo <huangzhuo1@xiaomi.com> Co-authored-by: lotsik <lotsik@mail.ru> Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com> Co-authored-by: nite-knite <nkCoding@gmail.com> Co-authored-by: Jyong <76649700+JohnJyong@users.noreply.github.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: gakkiyomi <gakkiyomi@aliyun.com> Co-authored-by: CN-P5 <heibai2006@gmail.com> Co-authored-by: CN-P5 <heibai2006@qq.com> Co-authored-by: Chuehnone <1897025+chuehnone@users.noreply.github.com> Co-authored-by: yihong <zouzou0208@gmail.com> Co-authored-by: Kevin9703 <51311316+Kevin9703@users.noreply.github.com> Co-authored-by: -LAN- <laipz8200@outlook.com> Co-authored-by: Boris Feld <lothiraldan@gmail.com> Co-authored-by: mbo <himabo@gmail.com> Co-authored-by: mabo <mabo@aeyes.ai> Co-authored-by: Warren Chen <warren.chen830@gmail.com> Co-authored-by: JzoNgKVO <27049666+JzoNgKVO@users.noreply.github.com> Co-authored-by: jiandanfeng <chenjh3@wangsu.com> Co-authored-by: zhu-an <70234959+xhdd123321@users.noreply.github.com> Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com> Co-authored-by: 海狸大師 <86974027+yenslife@users.noreply.github.com> Co-authored-by: Xu Song <xusong.vip@gmail.com> Co-authored-by: rayshaw001 <396301947@163.com> Co-authored-by: Ding Jiatong <dingjiatong@gmail.com> Co-authored-by: Bowen Liang <liangbowen@gf.com.cn> Co-authored-by: JasonVV <jasonwangiii@outlook.com> Co-authored-by: le0zh <newlight@qq.com> Co-authored-by: zhuxinliang <zhuxinliang@didiglobal.com> Co-authored-by: k-zaku <zaku99@outlook.jp> Co-authored-by: luckylhb90 <luckylhb90@gmail.com> Co-authored-by: hobo.l <hobo.l@binance.com> Co-authored-by: jiangbo721 <365065261@qq.com> Co-authored-by: 刘江波 <jiangbo721@163.com> Co-authored-by: Shun Miyazawa <34241526+miya@users.noreply.github.com> Co-authored-by: EricPan <30651140+Egfly@users.noreply.github.com> Co-authored-by: crazywoola <427733928@qq.com> Co-authored-by: sino <sino2322@gmail.com> Co-authored-by: Jhvcc <37662342+Jhvcc@users.noreply.github.com> Co-authored-by: lowell <lowell.hu@zkteco.in> Co-authored-by: Boris Polonsky <BorisPolonsky@users.noreply.github.com> Co-authored-by: Ademílson Tonato <ademilsonft@outlook.com> Co-authored-by: Ademílson Tonato <ademilson.tonato@refurbed.com> Co-authored-by: IWAI, Masaharu <iwaim.sub@gmail.com> Co-authored-by: Yueh-Po Peng (Yabi) <94939112+y10ab1@users.noreply.github.com> Co-authored-by: Jason <ggbbddjm@gmail.com> Co-authored-by: Xin Zhang <sjhpzx@gmail.com> Co-authored-by: yjc980121 <3898524+yjc980121@users.noreply.github.com> Co-authored-by: heyszt <36215648+hieheihei@users.noreply.github.com> Co-authored-by: Abdullah AlOsaimi <osaimiacc@gmail.com> Co-authored-by: Abdullah AlOsaimi <189027247+osaimi@users.noreply.github.com> Co-authored-by: Yingchun Lai <laiyingchun@apache.org> Co-authored-by: Hash Brown <hi@xzd.me> Co-authored-by: zuodongxu <192560071+zuodongxu@users.noreply.github.com> Co-authored-by: Masashi Tomooka <tmokmss@users.noreply.github.com> Co-authored-by: aplio <ryo.091219@gmail.com> Co-authored-by: Obada Khalili <54270856+obadakhalili@users.noreply.github.com> Co-authored-by: Nam Vu <zuzoovn@gmail.com> Co-authored-by: Kei YAMAZAKI <1715090+kei-yamazaki@users.noreply.github.com> Co-authored-by: TechnoHouse <13776377+deephbz@users.noreply.github.com> Co-authored-by: Riddhimaan-Senapati <114703025+Riddhimaan-Senapati@users.noreply.github.com> Co-authored-by: MaFee921 <31881301+2284730142@users.noreply.github.com> Co-authored-by: te-chan <t-nakanome@sakura-is.co.jp> Co-authored-by: HQidea <HQidea@users.noreply.github.com> Co-authored-by: Joshbly <36315710+Joshbly@users.noreply.github.com> Co-authored-by: xhe <xw897002528@gmail.com> Co-authored-by: weiwenyan-dev <154779315+weiwenyan-dev@users.noreply.github.com> Co-authored-by: ex_wenyan.wei <ex_wenyan.wei@tcl.com> Co-authored-by: engchina <12236799+engchina@users.noreply.github.com> Co-authored-by: engchina <atjapan2015@gmail.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: 呆萌闷油瓶 <253605712@qq.com> Co-authored-by: Kemal <kemalmeler@outlook.com> Co-authored-by: Lazy_Frog <4590648+lazyFrogLOL@users.noreply.github.com> Co-authored-by: Yi Xiao <54782454+YIXIAO0@users.noreply.github.com> Co-authored-by: Steven sun <98230804+Tuyohai@users.noreply.github.com> Co-authored-by: steven <sunzwj@digitalchina.com> Co-authored-by: Kalo Chin <91766386+fdb02983rhy@users.noreply.github.com> Co-authored-by: Katy Tao <34019945+KatyTao@users.noreply.github.com> Co-authored-by: depy <42985524+h4ckdepy@users.noreply.github.com> Co-authored-by: 胡春东 <gycm520@gmail.com> Co-authored-by: Junjie.M <118170653@qq.com> Co-authored-by: MuYu <mr.muzea@gmail.com> Co-authored-by: Naoki Takashima <39912547+takatea@users.noreply.github.com> Co-authored-by: Summer-Gu <37869445+gubinjie@users.noreply.github.com> Co-authored-by: Fei He <droxer.he@gmail.com> Co-authored-by: ybalbert001 <120714773+ybalbert001@users.noreply.github.com> Co-authored-by: Yuanbo Li <ybalbert@amazon.com> Co-authored-by: douxc <7553076+douxc@users.noreply.github.com> Co-authored-by: liuzhenghua <1090179900@qq.com> Co-authored-by: Wu Jiayang <62842862+Wu-Jiayang@users.noreply.github.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: kimjion <45935338+kimjion@users.noreply.github.com> Co-authored-by: AugNSo <song.tiankai@icloud.com> Co-authored-by: llinvokerl <38915183+llinvokerl@users.noreply.github.com> Co-authored-by: liusurong.lsr <liusurong.lsr@alibaba-inc.com> Co-authored-by: Vasu Negi <vasu-negi@users.noreply.github.com> Co-authored-by: Hundredwz <1808096180@qq.com> Co-authored-by: Xiyuan Chen <52963600+GareArc@users.noreply.github.com>
426 lines
17 KiB
Python
426 lines
17 KiB
Python
import json
|
|
from abc import ABC, abstractmethod
|
|
from collections.abc import Generator, Mapping, Sequence
|
|
from typing import Any, Optional
|
|
|
|
from core.agent.base_agent_runner import BaseAgentRunner
|
|
from core.agent.entities import AgentScratchpadUnit
|
|
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
|
|
from core.app.apps.base_app_queue_manager import PublishFrom
|
|
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
|
from core.model_runtime.entities.message_entities import (
|
|
AssistantPromptMessage,
|
|
PromptMessage,
|
|
PromptMessageTool,
|
|
ToolPromptMessage,
|
|
UserPromptMessage,
|
|
)
|
|
from core.ops.ops_trace_manager import TraceQueueManager
|
|
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
|
|
from core.tools.__base.tool import Tool
|
|
from core.tools.entities.tool_entities import ToolInvokeMeta
|
|
from core.tools.tool_engine import ToolEngine
|
|
from models.model import Message
|
|
|
|
|
|
class CotAgentRunner(BaseAgentRunner, ABC):
|
|
_is_first_iteration = True
|
|
_ignore_observation_providers = ["wenxin"]
|
|
_historic_prompt_messages: list[PromptMessage]
|
|
_agent_scratchpad: list[AgentScratchpadUnit]
|
|
_instruction: str
|
|
_query: str
|
|
_prompt_messages_tools: Sequence[PromptMessageTool]
|
|
|
|
def run(
|
|
self,
|
|
message: Message,
|
|
query: str,
|
|
inputs: Mapping[str, str],
|
|
) -> Generator:
|
|
"""
|
|
Run Cot agent application
|
|
"""
|
|
|
|
app_generate_entity = self.application_generate_entity
|
|
self._repack_app_generate_entity(app_generate_entity)
|
|
self._init_react_state(query)
|
|
|
|
trace_manager = app_generate_entity.trace_manager
|
|
|
|
# check model mode
|
|
if "Observation" not in app_generate_entity.model_conf.stop:
|
|
if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
|
|
app_generate_entity.model_conf.stop.append("Observation")
|
|
|
|
app_config = self.app_config
|
|
assert app_config.agent
|
|
|
|
# init instruction
|
|
inputs = inputs or {}
|
|
instruction = app_config.prompt_template.simple_prompt_template or ""
|
|
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
|
|
|
|
iteration_step = 1
|
|
max_iteration_steps = min(app_config.agent.max_iteration if app_config.agent else 5, 5) + 1
|
|
|
|
# convert tools into ModelRuntime Tool format
|
|
tool_instances, prompt_messages_tools = self._init_prompt_tools()
|
|
self._prompt_messages_tools = prompt_messages_tools
|
|
|
|
function_call_state = True
|
|
llm_usage: dict[str, Optional[LLMUsage]] = {"usage": None}
|
|
final_answer = ""
|
|
|
|
def increase_usage(final_llm_usage_dict: dict[str, Optional[LLMUsage]], usage: LLMUsage):
|
|
if not final_llm_usage_dict["usage"]:
|
|
final_llm_usage_dict["usage"] = usage
|
|
else:
|
|
llm_usage = final_llm_usage_dict["usage"]
|
|
llm_usage.prompt_tokens += usage.prompt_tokens
|
|
llm_usage.completion_tokens += usage.completion_tokens
|
|
llm_usage.prompt_price += usage.prompt_price
|
|
llm_usage.completion_price += usage.completion_price
|
|
llm_usage.total_price += usage.total_price
|
|
|
|
model_instance = self.model_instance
|
|
|
|
while function_call_state and iteration_step <= max_iteration_steps:
|
|
# continue to run until there is not any tool call
|
|
function_call_state = False
|
|
|
|
if iteration_step == max_iteration_steps:
|
|
# the last iteration, remove all tools
|
|
self._prompt_messages_tools = []
|
|
|
|
message_file_ids: list[str] = []
|
|
|
|
agent_thought = self.create_agent_thought(
|
|
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
|
|
)
|
|
|
|
if iteration_step > 1:
|
|
self.queue_manager.publish(
|
|
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
|
|
)
|
|
|
|
# recalc llm max tokens
|
|
prompt_messages = self._organize_prompt_messages()
|
|
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
|
# invoke model
|
|
chunks = model_instance.invoke_llm(
|
|
prompt_messages=prompt_messages,
|
|
model_parameters=app_generate_entity.model_conf.parameters,
|
|
tools=[],
|
|
stop=app_generate_entity.model_conf.stop,
|
|
stream=True,
|
|
user=self.user_id,
|
|
callbacks=[],
|
|
)
|
|
|
|
usage_dict: dict[str, Optional[LLMUsage]] = {}
|
|
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
|
|
scratchpad = AgentScratchpadUnit(
|
|
agent_response="",
|
|
thought="",
|
|
action_str="",
|
|
observation="",
|
|
action=None,
|
|
)
|
|
|
|
# publish agent thought if it's first iteration
|
|
if iteration_step == 1:
|
|
self.queue_manager.publish(
|
|
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
|
|
)
|
|
|
|
for chunk in react_chunks:
|
|
if isinstance(chunk, AgentScratchpadUnit.Action):
|
|
action = chunk
|
|
# detect action
|
|
assert scratchpad.agent_response is not None
|
|
scratchpad.agent_response += json.dumps(chunk.model_dump())
|
|
scratchpad.action_str = json.dumps(chunk.model_dump())
|
|
scratchpad.action = action
|
|
else:
|
|
assert scratchpad.agent_response is not None
|
|
scratchpad.agent_response += chunk
|
|
assert scratchpad.thought is not None
|
|
scratchpad.thought += chunk
|
|
yield LLMResultChunk(
|
|
model=self.model_config.model,
|
|
prompt_messages=prompt_messages,
|
|
system_fingerprint="",
|
|
delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
|
|
)
|
|
|
|
assert scratchpad.thought is not None
|
|
scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
|
|
self._agent_scratchpad.append(scratchpad)
|
|
|
|
# get llm usage
|
|
if "usage" in usage_dict:
|
|
if usage_dict["usage"] is not None:
|
|
increase_usage(llm_usage, usage_dict["usage"])
|
|
else:
|
|
usage_dict["usage"] = LLMUsage.empty_usage()
|
|
|
|
self.save_agent_thought(
|
|
agent_thought=agent_thought,
|
|
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
|
|
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
|
|
tool_invoke_meta={},
|
|
thought=scratchpad.thought or "",
|
|
observation="",
|
|
answer=scratchpad.agent_response or "",
|
|
messages_ids=[],
|
|
llm_usage=usage_dict["usage"],
|
|
)
|
|
|
|
if not scratchpad.is_final():
|
|
self.queue_manager.publish(
|
|
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
|
|
)
|
|
|
|
if not scratchpad.action:
|
|
# failed to extract action, return final answer directly
|
|
final_answer = ""
|
|
else:
|
|
if scratchpad.action.action_name.lower() == "final answer":
|
|
# action is final answer, return final answer directly
|
|
try:
|
|
if isinstance(scratchpad.action.action_input, dict):
|
|
final_answer = json.dumps(scratchpad.action.action_input)
|
|
elif isinstance(scratchpad.action.action_input, str):
|
|
final_answer = scratchpad.action.action_input
|
|
else:
|
|
final_answer = f"{scratchpad.action.action_input}"
|
|
except json.JSONDecodeError:
|
|
final_answer = f"{scratchpad.action.action_input}"
|
|
else:
|
|
function_call_state = True
|
|
# action is tool call, invoke tool
|
|
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
|
|
action=scratchpad.action,
|
|
tool_instances=tool_instances,
|
|
message_file_ids=message_file_ids,
|
|
trace_manager=trace_manager,
|
|
)
|
|
scratchpad.observation = tool_invoke_response
|
|
scratchpad.agent_response = tool_invoke_response
|
|
|
|
self.save_agent_thought(
|
|
agent_thought=agent_thought,
|
|
tool_name=scratchpad.action.action_name,
|
|
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
|
|
thought=scratchpad.thought or "",
|
|
observation={scratchpad.action.action_name: tool_invoke_response},
|
|
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
|
|
answer=scratchpad.agent_response,
|
|
messages_ids=message_file_ids,
|
|
llm_usage=usage_dict["usage"],
|
|
)
|
|
|
|
self.queue_manager.publish(
|
|
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
|
|
)
|
|
|
|
# update prompt tool message
|
|
for prompt_tool in self._prompt_messages_tools:
|
|
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
|
|
|
iteration_step += 1
|
|
|
|
yield LLMResultChunk(
|
|
model=model_instance.model,
|
|
prompt_messages=prompt_messages,
|
|
delta=LLMResultChunkDelta(
|
|
index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
|
|
),
|
|
system_fingerprint="",
|
|
)
|
|
|
|
# save agent thought
|
|
self.save_agent_thought(
|
|
agent_thought=agent_thought,
|
|
tool_name="",
|
|
tool_input={},
|
|
tool_invoke_meta={},
|
|
thought=final_answer,
|
|
observation={},
|
|
answer=final_answer,
|
|
messages_ids=[],
|
|
)
|
|
# publish end event
|
|
self.queue_manager.publish(
|
|
QueueMessageEndEvent(
|
|
llm_result=LLMResult(
|
|
model=model_instance.model,
|
|
prompt_messages=prompt_messages,
|
|
message=AssistantPromptMessage(content=final_answer),
|
|
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
|
|
system_fingerprint="",
|
|
)
|
|
),
|
|
PublishFrom.APPLICATION_MANAGER,
|
|
)
|
|
|
|
def _handle_invoke_action(
|
|
self,
|
|
action: AgentScratchpadUnit.Action,
|
|
tool_instances: Mapping[str, Tool],
|
|
message_file_ids: list[str],
|
|
trace_manager: Optional[TraceQueueManager] = None,
|
|
) -> tuple[str, ToolInvokeMeta]:
|
|
"""
|
|
handle invoke action
|
|
:param action: action
|
|
:param tool_instances: tool instances
|
|
:param message_file_ids: message file ids
|
|
:param trace_manager: trace manager
|
|
:return: observation, meta
|
|
"""
|
|
# action is tool call, invoke tool
|
|
tool_call_name = action.action_name
|
|
tool_call_args = action.action_input
|
|
tool_instance = tool_instances.get(tool_call_name)
|
|
|
|
if not tool_instance:
|
|
answer = f"there is not a tool named {tool_call_name}"
|
|
return answer, ToolInvokeMeta.error_instance(answer)
|
|
|
|
if isinstance(tool_call_args, str):
|
|
try:
|
|
tool_call_args = json.loads(tool_call_args)
|
|
except json.JSONDecodeError:
|
|
pass
|
|
|
|
# invoke tool
|
|
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
|
tool=tool_instance,
|
|
tool_parameters=tool_call_args,
|
|
user_id=self.user_id,
|
|
tenant_id=self.tenant_id,
|
|
message=self.message,
|
|
invoke_from=self.application_generate_entity.invoke_from,
|
|
agent_tool_callback=self.agent_callback,
|
|
trace_manager=trace_manager,
|
|
)
|
|
|
|
# publish files
|
|
for message_file_id in message_files:
|
|
# publish message file
|
|
self.queue_manager.publish(
|
|
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
|
|
)
|
|
# add message file ids
|
|
message_file_ids.append(message_file_id)
|
|
|
|
return tool_invoke_response, tool_invoke_meta
|
|
|
|
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
|
|
"""
|
|
convert dict to action
|
|
"""
|
|
return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
|
|
|
|
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: Mapping[str, Any]) -> str:
|
|
"""
|
|
fill in inputs from external data tools
|
|
"""
|
|
for key, value in inputs.items():
|
|
try:
|
|
instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
|
|
except Exception:
|
|
continue
|
|
|
|
return instruction
|
|
|
|
def _init_react_state(self, query) -> None:
|
|
"""
|
|
init agent scratchpad
|
|
"""
|
|
self._query = query
|
|
self._agent_scratchpad = []
|
|
self._historic_prompt_messages = self._organize_historic_prompt_messages()
|
|
|
|
@abstractmethod
|
|
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
|
"""
|
|
organize prompt messages
|
|
"""
|
|
|
|
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
|
|
"""
|
|
format assistant message
|
|
"""
|
|
message = ""
|
|
for scratchpad in agent_scratchpad:
|
|
if scratchpad.is_final():
|
|
message += f"Final Answer: {scratchpad.agent_response}"
|
|
else:
|
|
message += f"Thought: {scratchpad.thought}\n\n"
|
|
if scratchpad.action_str:
|
|
message += f"Action: {scratchpad.action_str}\n\n"
|
|
if scratchpad.observation:
|
|
message += f"Observation: {scratchpad.observation}\n\n"
|
|
|
|
return message
|
|
|
|
def _organize_historic_prompt_messages(
|
|
self, current_session_messages: list[PromptMessage] | None = None
|
|
) -> list[PromptMessage]:
|
|
"""
|
|
organize historic prompt messages
|
|
"""
|
|
result: list[PromptMessage] = []
|
|
scratchpads: list[AgentScratchpadUnit] = []
|
|
current_scratchpad: AgentScratchpadUnit | None = None
|
|
|
|
for message in self.history_prompt_messages:
|
|
if isinstance(message, AssistantPromptMessage):
|
|
if not current_scratchpad:
|
|
assert isinstance(message.content, str)
|
|
current_scratchpad = AgentScratchpadUnit(
|
|
agent_response=message.content,
|
|
thought=message.content or "I am thinking about how to help you",
|
|
action_str="",
|
|
action=None,
|
|
observation=None,
|
|
)
|
|
scratchpads.append(current_scratchpad)
|
|
if message.tool_calls:
|
|
try:
|
|
current_scratchpad.action = AgentScratchpadUnit.Action(
|
|
action_name=message.tool_calls[0].function.name,
|
|
action_input=json.loads(message.tool_calls[0].function.arguments),
|
|
)
|
|
current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
|
|
except:
|
|
pass
|
|
elif isinstance(message, ToolPromptMessage):
|
|
if current_scratchpad:
|
|
assert isinstance(message.content, str)
|
|
current_scratchpad.observation = message.content
|
|
else:
|
|
raise NotImplementedError("expected str type")
|
|
elif isinstance(message, UserPromptMessage):
|
|
if scratchpads:
|
|
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
|
|
scratchpads = []
|
|
current_scratchpad = None
|
|
|
|
result.append(message)
|
|
|
|
if scratchpads:
|
|
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
|
|
|
|
historic_prompts = AgentHistoryPromptTransform(
|
|
model_config=self.model_config,
|
|
prompt_messages=current_session_messages or [],
|
|
history_messages=result,
|
|
memory=self.memory,
|
|
).get_prompt()
|
|
return historic_prompts
|