mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-05-14 07:18:20 +08:00
532 lines
16 KiB
Python
532 lines
16 KiB
Python
import binascii
|
|
from collections.abc import Generator, Sequence
|
|
from typing import IO, Optional
|
|
|
|
from core.model_runtime.entities.llm_entities import LLMResultChunk
|
|
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
|
from core.model_runtime.entities.model_entities import AIModelEntity
|
|
from core.model_runtime.entities.rerank_entities import RerankResult
|
|
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
|
from core.model_runtime.utils.encoders import jsonable_encoder
|
|
from core.plugin.entities.plugin_daemon import (
|
|
PluginBasicBooleanResponse,
|
|
PluginDaemonInnerError,
|
|
PluginLLMNumTokensResponse,
|
|
PluginModelProviderEntity,
|
|
PluginModelSchemaEntity,
|
|
PluginStringResultResponse,
|
|
PluginTextEmbeddingNumTokensResponse,
|
|
PluginVoicesResponse,
|
|
)
|
|
from core.plugin.impl.base import BasePluginClient
|
|
|
|
|
|
class PluginModelClient(BasePluginClient):
|
|
def fetch_model_providers(self, tenant_id: str) -> Sequence[PluginModelProviderEntity]:
|
|
"""
|
|
Fetch model providers for the given tenant.
|
|
"""
|
|
response = self._request_with_plugin_daemon_response(
|
|
"GET",
|
|
f"plugin/{tenant_id}/management/models",
|
|
list[PluginModelProviderEntity],
|
|
params={"page": 1, "page_size": 256},
|
|
)
|
|
return response
|
|
|
|
def get_model_schema(
|
|
self,
|
|
tenant_id: str,
|
|
user_id: str,
|
|
plugin_id: str,
|
|
provider: str,
|
|
model_type: str,
|
|
model: str,
|
|
credentials: dict,
|
|
) -> AIModelEntity | None:
|
|
"""
|
|
Get model schema
|
|
"""
|
|
response = self._request_with_plugin_daemon_response_stream(
|
|
"POST",
|
|
f"plugin/{tenant_id}/dispatch/model/schema",
|
|
PluginModelSchemaEntity,
|
|
data={
|
|
"user_id": user_id,
|
|
"data": {
|
|
"provider": provider,
|
|
"model_type": model_type,
|
|
"model": model,
|
|
"credentials": credentials,
|
|
},
|
|
},
|
|
headers={
|
|
"X-Plugin-ID": plugin_id,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
|
|
for resp in response:
|
|
return resp.model_schema
|
|
|
|
return None
|
|
|
|
def validate_provider_credentials(
|
|
self, tenant_id: str, user_id: str, plugin_id: str, provider: str, credentials: dict
|
|
) -> bool:
|
|
"""
|
|
validate the credentials of the provider
|
|
"""
|
|
response = self._request_with_plugin_daemon_response_stream(
|
|
"POST",
|
|
f"plugin/{tenant_id}/dispatch/model/validate_provider_credentials",
|
|
PluginBasicBooleanResponse,
|
|
data={
|
|
"user_id": user_id,
|
|
"data": {
|
|
"provider": provider,
|
|
"credentials": credentials,
|
|
},
|
|
},
|
|
headers={
|
|
"X-Plugin-ID": plugin_id,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
|
|
for resp in response:
|
|
if resp.credentials and isinstance(resp.credentials, dict):
|
|
credentials.update(resp.credentials)
|
|
|
|
return resp.result
|
|
|
|
return False
|
|
|
|
def validate_model_credentials(
|
|
self,
|
|
tenant_id: str,
|
|
user_id: str,
|
|
plugin_id: str,
|
|
provider: str,
|
|
model_type: str,
|
|
model: str,
|
|
credentials: dict,
|
|
) -> bool:
|
|
"""
|
|
validate the credentials of the provider
|
|
"""
|
|
response = self._request_with_plugin_daemon_response_stream(
|
|
"POST",
|
|
f"plugin/{tenant_id}/dispatch/model/validate_model_credentials",
|
|
PluginBasicBooleanResponse,
|
|
data={
|
|
"user_id": user_id,
|
|
"data": {
|
|
"provider": provider,
|
|
"model_type": model_type,
|
|
"model": model,
|
|
"credentials": credentials,
|
|
},
|
|
},
|
|
headers={
|
|
"X-Plugin-ID": plugin_id,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
|
|
for resp in response:
|
|
if resp.credentials and isinstance(resp.credentials, dict):
|
|
credentials.update(resp.credentials)
|
|
|
|
return resp.result
|
|
|
|
return False
|
|
|
|
def invoke_llm(
|
|
self,
|
|
tenant_id: str,
|
|
user_id: str,
|
|
plugin_id: str,
|
|
provider: str,
|
|
model: str,
|
|
credentials: dict,
|
|
prompt_messages: list[PromptMessage],
|
|
model_parameters: Optional[dict] = None,
|
|
tools: Optional[list[PromptMessageTool]] = None,
|
|
stop: Optional[list[str]] = None,
|
|
stream: bool = True,
|
|
) -> Generator[LLMResultChunk, None, None]:
|
|
"""
|
|
Invoke llm
|
|
"""
|
|
response = self._request_with_plugin_daemon_response_stream(
|
|
method="POST",
|
|
path=f"plugin/{tenant_id}/dispatch/llm/invoke",
|
|
type=LLMResultChunk,
|
|
data=jsonable_encoder(
|
|
{
|
|
"user_id": user_id,
|
|
"data": {
|
|
"provider": provider,
|
|
"model_type": "llm",
|
|
"model": model,
|
|
"credentials": credentials,
|
|
"prompt_messages": prompt_messages,
|
|
"model_parameters": model_parameters,
|
|
"tools": tools,
|
|
"stop": stop,
|
|
"stream": stream,
|
|
},
|
|
}
|
|
),
|
|
headers={
|
|
"X-Plugin-ID": plugin_id,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
|
|
try:
|
|
yield from response
|
|
except PluginDaemonInnerError as e:
|
|
raise ValueError(e.message + str(e.code))
|
|
|
|
def get_llm_num_tokens(
|
|
self,
|
|
tenant_id: str,
|
|
user_id: str,
|
|
plugin_id: str,
|
|
provider: str,
|
|
model_type: str,
|
|
model: str,
|
|
credentials: dict,
|
|
prompt_messages: list[PromptMessage],
|
|
tools: Optional[list[PromptMessageTool]] = None,
|
|
) -> int:
|
|
"""
|
|
Get number of tokens for llm
|
|
"""
|
|
response = self._request_with_plugin_daemon_response_stream(
|
|
method="POST",
|
|
path=f"plugin/{tenant_id}/dispatch/llm/num_tokens",
|
|
type=PluginLLMNumTokensResponse,
|
|
data=jsonable_encoder(
|
|
{
|
|
"user_id": user_id,
|
|
"data": {
|
|
"provider": provider,
|
|
"model_type": model_type,
|
|
"model": model,
|
|
"credentials": credentials,
|
|
"prompt_messages": prompt_messages,
|
|
"tools": tools,
|
|
},
|
|
}
|
|
),
|
|
headers={
|
|
"X-Plugin-ID": plugin_id,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
|
|
for resp in response:
|
|
return resp.num_tokens
|
|
|
|
return 0
|
|
|
|
def invoke_text_embedding(
|
|
self,
|
|
tenant_id: str,
|
|
user_id: str,
|
|
plugin_id: str,
|
|
provider: str,
|
|
model: str,
|
|
credentials: dict,
|
|
texts: list[str],
|
|
input_type: str,
|
|
) -> TextEmbeddingResult:
|
|
"""
|
|
Invoke text embedding
|
|
"""
|
|
response = self._request_with_plugin_daemon_response_stream(
|
|
method="POST",
|
|
path=f"plugin/{tenant_id}/dispatch/text_embedding/invoke",
|
|
type=TextEmbeddingResult,
|
|
data=jsonable_encoder(
|
|
{
|
|
"user_id": user_id,
|
|
"data": {
|
|
"provider": provider,
|
|
"model_type": "text-embedding",
|
|
"model": model,
|
|
"credentials": credentials,
|
|
"texts": texts,
|
|
"input_type": input_type,
|
|
},
|
|
}
|
|
),
|
|
headers={
|
|
"X-Plugin-ID": plugin_id,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
|
|
for resp in response:
|
|
return resp
|
|
|
|
raise ValueError("Failed to invoke text embedding")
|
|
|
|
def get_text_embedding_num_tokens(
|
|
self,
|
|
tenant_id: str,
|
|
user_id: str,
|
|
plugin_id: str,
|
|
provider: str,
|
|
model: str,
|
|
credentials: dict,
|
|
texts: list[str],
|
|
) -> list[int]:
|
|
"""
|
|
Get number of tokens for text embedding
|
|
"""
|
|
response = self._request_with_plugin_daemon_response_stream(
|
|
method="POST",
|
|
path=f"plugin/{tenant_id}/dispatch/text_embedding/num_tokens",
|
|
type=PluginTextEmbeddingNumTokensResponse,
|
|
data=jsonable_encoder(
|
|
{
|
|
"user_id": user_id,
|
|
"data": {
|
|
"provider": provider,
|
|
"model_type": "text-embedding",
|
|
"model": model,
|
|
"credentials": credentials,
|
|
"texts": texts,
|
|
},
|
|
}
|
|
),
|
|
headers={
|
|
"X-Plugin-ID": plugin_id,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
|
|
for resp in response:
|
|
return resp.num_tokens
|
|
|
|
return []
|
|
|
|
def invoke_rerank(
|
|
self,
|
|
tenant_id: str,
|
|
user_id: str,
|
|
plugin_id: str,
|
|
provider: str,
|
|
model: str,
|
|
credentials: dict,
|
|
query: str,
|
|
docs: list[str],
|
|
score_threshold: Optional[float] = None,
|
|
top_n: Optional[int] = None,
|
|
) -> RerankResult:
|
|
"""
|
|
Invoke rerank
|
|
"""
|
|
response = self._request_with_plugin_daemon_response_stream(
|
|
method="POST",
|
|
path=f"plugin/{tenant_id}/dispatch/rerank/invoke",
|
|
type=RerankResult,
|
|
data=jsonable_encoder(
|
|
{
|
|
"user_id": user_id,
|
|
"data": {
|
|
"provider": provider,
|
|
"model_type": "rerank",
|
|
"model": model,
|
|
"credentials": credentials,
|
|
"query": query,
|
|
"docs": docs,
|
|
"score_threshold": score_threshold,
|
|
"top_n": top_n,
|
|
},
|
|
}
|
|
),
|
|
headers={
|
|
"X-Plugin-ID": plugin_id,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
|
|
for resp in response:
|
|
return resp
|
|
|
|
raise ValueError("Failed to invoke rerank")
|
|
|
|
def invoke_tts(
|
|
self,
|
|
tenant_id: str,
|
|
user_id: str,
|
|
plugin_id: str,
|
|
provider: str,
|
|
model: str,
|
|
credentials: dict,
|
|
content_text: str,
|
|
voice: str,
|
|
) -> Generator[bytes, None, None]:
|
|
"""
|
|
Invoke tts
|
|
"""
|
|
response = self._request_with_plugin_daemon_response_stream(
|
|
method="POST",
|
|
path=f"plugin/{tenant_id}/dispatch/tts/invoke",
|
|
type=PluginStringResultResponse,
|
|
data=jsonable_encoder(
|
|
{
|
|
"user_id": user_id,
|
|
"data": {
|
|
"provider": provider,
|
|
"model_type": "tts",
|
|
"model": model,
|
|
"credentials": credentials,
|
|
"tenant_id": tenant_id,
|
|
"content_text": content_text,
|
|
"voice": voice,
|
|
},
|
|
}
|
|
),
|
|
headers={
|
|
"X-Plugin-ID": plugin_id,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
|
|
try:
|
|
for result in response:
|
|
hex_str = result.result
|
|
yield binascii.unhexlify(hex_str)
|
|
except PluginDaemonInnerError as e:
|
|
raise ValueError(e.message + str(e.code))
|
|
|
|
def get_tts_model_voices(
|
|
self,
|
|
tenant_id: str,
|
|
user_id: str,
|
|
plugin_id: str,
|
|
provider: str,
|
|
model: str,
|
|
credentials: dict,
|
|
language: Optional[str] = None,
|
|
) -> list[dict]:
|
|
"""
|
|
Get tts model voices
|
|
"""
|
|
response = self._request_with_plugin_daemon_response_stream(
|
|
method="POST",
|
|
path=f"plugin/{tenant_id}/dispatch/tts/model/voices",
|
|
type=PluginVoicesResponse,
|
|
data=jsonable_encoder(
|
|
{
|
|
"user_id": user_id,
|
|
"data": {
|
|
"provider": provider,
|
|
"model_type": "tts",
|
|
"model": model,
|
|
"credentials": credentials,
|
|
"language": language,
|
|
},
|
|
}
|
|
),
|
|
headers={
|
|
"X-Plugin-ID": plugin_id,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
|
|
for resp in response:
|
|
voices = []
|
|
for voice in resp.voices:
|
|
voices.append({"name": voice.name, "value": voice.value})
|
|
|
|
return voices
|
|
|
|
return []
|
|
|
|
def invoke_speech_to_text(
|
|
self,
|
|
tenant_id: str,
|
|
user_id: str,
|
|
plugin_id: str,
|
|
provider: str,
|
|
model: str,
|
|
credentials: dict,
|
|
file: IO[bytes],
|
|
) -> str:
|
|
"""
|
|
Invoke speech to text
|
|
"""
|
|
response = self._request_with_plugin_daemon_response_stream(
|
|
method="POST",
|
|
path=f"plugin/{tenant_id}/dispatch/speech2text/invoke",
|
|
type=PluginStringResultResponse,
|
|
data=jsonable_encoder(
|
|
{
|
|
"user_id": user_id,
|
|
"data": {
|
|
"provider": provider,
|
|
"model_type": "speech2text",
|
|
"model": model,
|
|
"credentials": credentials,
|
|
"file": binascii.hexlify(file.read()).decode(),
|
|
},
|
|
}
|
|
),
|
|
headers={
|
|
"X-Plugin-ID": plugin_id,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
|
|
for resp in response:
|
|
return resp.result
|
|
|
|
raise ValueError("Failed to invoke speech to text")
|
|
|
|
def invoke_moderation(
|
|
self,
|
|
tenant_id: str,
|
|
user_id: str,
|
|
plugin_id: str,
|
|
provider: str,
|
|
model: str,
|
|
credentials: dict,
|
|
text: str,
|
|
) -> bool:
|
|
"""
|
|
Invoke moderation
|
|
"""
|
|
response = self._request_with_plugin_daemon_response_stream(
|
|
method="POST",
|
|
path=f"plugin/{tenant_id}/dispatch/moderation/invoke",
|
|
type=PluginBasicBooleanResponse,
|
|
data=jsonable_encoder(
|
|
{
|
|
"user_id": user_id,
|
|
"data": {
|
|
"provider": provider,
|
|
"model_type": "moderation",
|
|
"model": model,
|
|
"credentials": credentials,
|
|
"text": text,
|
|
},
|
|
}
|
|
),
|
|
headers={
|
|
"X-Plugin-ID": plugin_id,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
|
|
for resp in response:
|
|
return resp.result
|
|
|
|
raise ValueError("Failed to invoke moderation")
|