Chenhe Gu 14a2eeba0c
Add bedrock (#2119)
Co-authored-by: takatost <takatost@users.noreply.github.com>
Co-authored-by: Garfield Dai <dai.hai@foxmail.com>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: Charlie.Wei <luowei@cvte.com>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: Benjamin <benjaminx@gmail.com>
2024-01-22 11:00:19 +08:00

118 lines
3.6 KiB
Python

import os
from typing import Generator
import pytest
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessage
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.bedrock.llm.llm import BedrockLargeLanguageModel
def test_validate_credentials():
model = BedrockLargeLanguageModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model='meta.llama2-13b-chat-v1',
credentials={
'anthropic_api_key': 'invalid_key'
}
)
model.validate_credentials(
model='meta.llama2-13b-chat-v1',
credentials={
"aws_region": os.getenv("AWS_REGION"),
"aws_access_key": os.getenv("AWS_ACCESS_KEY"),
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY")
}
)
def test_invoke_model():
model = BedrockLargeLanguageModel()
response = model.invoke(
model='meta.llama2-13b-chat-v1',
credentials={
"aws_region": os.getenv("AWS_REGION"),
"aws_access_key": os.getenv("AWS_ACCESS_KEY"),
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY")
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Hello World!'
)
],
model_parameters={
'temperature': 0.0,
'top_p': 1.0,
'max_tokens_to_sample': 10
},
stop=['How'],
stream=False,
user="abc-123"
)
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
def test_invoke_stream_model():
model = BedrockLargeLanguageModel()
response = model.invoke(
model='meta.llama2-13b-chat-v1',
credentials={
"aws_region": os.getenv("AWS_REGION"),
"aws_access_key": os.getenv("AWS_ACCESS_KEY"),
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY")
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Hello World!'
)
],
model_parameters={
'temperature': 0.0,
'max_tokens_to_sample': 100
},
stream=True,
user="abc-123"
)
assert isinstance(response, Generator)
for chunk in response:
print(chunk)
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
def test_get_num_tokens():
model = BedrockLargeLanguageModel()
num_tokens = model.get_num_tokens(
model='meta.llama2-13b-chat-v1',
credentials = {
"aws_region": os.getenv("AWS_REGION"),
"aws_access_key": os.getenv("AWS_ACCESS_KEY"),
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY")
},
messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Hello World!'
)
]
)
assert num_tokens == 18