mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-04-23 06:09:43 +08:00
336 lines
11 KiB
Python
336 lines
11 KiB
Python
import tempfile
|
|
from binascii import hexlify, unhexlify
|
|
from collections.abc import Generator
|
|
|
|
from core.model_manager import ModelManager
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
|
from core.model_runtime.entities.message_entities import (
|
|
PromptMessage,
|
|
SystemPromptMessage,
|
|
UserPromptMessage,
|
|
)
|
|
from core.plugin.backwards_invocation.base import BaseBackwardsInvocation
|
|
from core.plugin.entities.request import (
|
|
RequestInvokeLLM,
|
|
RequestInvokeModeration,
|
|
RequestInvokeRerank,
|
|
RequestInvokeSpeech2Text,
|
|
RequestInvokeSummary,
|
|
RequestInvokeTextEmbedding,
|
|
RequestInvokeTTS,
|
|
)
|
|
from core.tools.entities.tool_entities import ToolProviderType
|
|
from core.tools.utils.model_invocation_utils import ModelInvocationUtils
|
|
from core.workflow.nodes.llm.node import LLMNode
|
|
from models.account import Tenant
|
|
|
|
|
|
class PluginModelBackwardsInvocation(BaseBackwardsInvocation):
|
|
@classmethod
|
|
def invoke_llm(
|
|
cls, user_id: str, tenant: Tenant, payload: RequestInvokeLLM
|
|
) -> Generator[LLMResultChunk, None, None] | LLMResult:
|
|
"""
|
|
invoke llm
|
|
"""
|
|
model_instance = ModelManager().get_model_instance(
|
|
tenant_id=tenant.id,
|
|
provider=payload.provider,
|
|
model_type=payload.model_type,
|
|
model=payload.model,
|
|
)
|
|
|
|
# invoke model
|
|
response = model_instance.invoke_llm(
|
|
prompt_messages=payload.prompt_messages,
|
|
model_parameters=payload.completion_params,
|
|
tools=payload.tools,
|
|
stop=payload.stop,
|
|
stream=True if payload.stream is None else payload.stream,
|
|
user=user_id,
|
|
)
|
|
|
|
if isinstance(response, Generator):
|
|
|
|
def handle() -> Generator[LLMResultChunk, None, None]:
|
|
for chunk in response:
|
|
if chunk.delta.usage:
|
|
LLMNode.deduct_llm_quota(
|
|
tenant_id=tenant.id, model_instance=model_instance, usage=chunk.delta.usage
|
|
)
|
|
yield chunk
|
|
|
|
return handle()
|
|
else:
|
|
if response.usage:
|
|
LLMNode.deduct_llm_quota(tenant_id=tenant.id, model_instance=model_instance, usage=response.usage)
|
|
|
|
def handle_non_streaming(response: LLMResult) -> Generator[LLMResultChunk, None, None]:
|
|
yield LLMResultChunk(
|
|
model=response.model,
|
|
prompt_messages=response.prompt_messages,
|
|
system_fingerprint=response.system_fingerprint,
|
|
delta=LLMResultChunkDelta(
|
|
index=0,
|
|
message=response.message,
|
|
usage=response.usage,
|
|
finish_reason="",
|
|
),
|
|
)
|
|
|
|
return handle_non_streaming(response)
|
|
|
|
@classmethod
|
|
def invoke_text_embedding(cls, user_id: str, tenant: Tenant, payload: RequestInvokeTextEmbedding):
|
|
"""
|
|
invoke text embedding
|
|
"""
|
|
model_instance = ModelManager().get_model_instance(
|
|
tenant_id=tenant.id,
|
|
provider=payload.provider,
|
|
model_type=payload.model_type,
|
|
model=payload.model,
|
|
)
|
|
|
|
# invoke model
|
|
response = model_instance.invoke_text_embedding(
|
|
texts=payload.texts,
|
|
user=user_id,
|
|
)
|
|
|
|
return response
|
|
|
|
@classmethod
|
|
def invoke_rerank(cls, user_id: str, tenant: Tenant, payload: RequestInvokeRerank):
|
|
"""
|
|
invoke rerank
|
|
"""
|
|
model_instance = ModelManager().get_model_instance(
|
|
tenant_id=tenant.id,
|
|
provider=payload.provider,
|
|
model_type=payload.model_type,
|
|
model=payload.model,
|
|
)
|
|
|
|
# invoke model
|
|
response = model_instance.invoke_rerank(
|
|
query=payload.query,
|
|
docs=payload.docs,
|
|
score_threshold=payload.score_threshold,
|
|
top_n=payload.top_n,
|
|
user=user_id,
|
|
)
|
|
|
|
return response
|
|
|
|
@classmethod
|
|
def invoke_tts(cls, user_id: str, tenant: Tenant, payload: RequestInvokeTTS):
|
|
"""
|
|
invoke tts
|
|
"""
|
|
model_instance = ModelManager().get_model_instance(
|
|
tenant_id=tenant.id,
|
|
provider=payload.provider,
|
|
model_type=payload.model_type,
|
|
model=payload.model,
|
|
)
|
|
|
|
# invoke model
|
|
response = model_instance.invoke_tts(
|
|
content_text=payload.content_text,
|
|
tenant_id=tenant.id,
|
|
voice=payload.voice,
|
|
user=user_id,
|
|
)
|
|
|
|
def handle() -> Generator[dict, None, None]:
|
|
for chunk in response:
|
|
yield {"result": hexlify(chunk).decode("utf-8")}
|
|
|
|
return handle()
|
|
|
|
@classmethod
|
|
def invoke_speech2text(cls, user_id: str, tenant: Tenant, payload: RequestInvokeSpeech2Text):
|
|
"""
|
|
invoke speech2text
|
|
"""
|
|
model_instance = ModelManager().get_model_instance(
|
|
tenant_id=tenant.id,
|
|
provider=payload.provider,
|
|
model_type=payload.model_type,
|
|
model=payload.model,
|
|
)
|
|
|
|
# invoke model
|
|
with tempfile.NamedTemporaryFile(suffix=".mp3", mode="wb", delete=True) as temp:
|
|
temp.write(unhexlify(payload.file))
|
|
temp.flush()
|
|
temp.seek(0)
|
|
|
|
response = model_instance.invoke_speech2text(
|
|
file=temp,
|
|
user=user_id,
|
|
)
|
|
|
|
return {
|
|
"result": response,
|
|
}
|
|
|
|
@classmethod
|
|
def invoke_moderation(cls, user_id: str, tenant: Tenant, payload: RequestInvokeModeration):
|
|
"""
|
|
invoke moderation
|
|
"""
|
|
model_instance = ModelManager().get_model_instance(
|
|
tenant_id=tenant.id,
|
|
provider=payload.provider,
|
|
model_type=payload.model_type,
|
|
model=payload.model,
|
|
)
|
|
|
|
# invoke model
|
|
response = model_instance.invoke_moderation(
|
|
text=payload.text,
|
|
user=user_id,
|
|
)
|
|
|
|
return {
|
|
"result": response,
|
|
}
|
|
|
|
@classmethod
|
|
def get_system_model_max_tokens(cls, tenant_id: str) -> int:
|
|
"""
|
|
get system model max tokens
|
|
"""
|
|
return ModelInvocationUtils.get_max_llm_context_tokens(tenant_id=tenant_id)
|
|
|
|
@classmethod
|
|
def get_prompt_tokens(cls, tenant_id: str, prompt_messages: list[PromptMessage]) -> int:
|
|
"""
|
|
get prompt tokens
|
|
"""
|
|
return ModelInvocationUtils.calculate_tokens(tenant_id=tenant_id, prompt_messages=prompt_messages)
|
|
|
|
@classmethod
|
|
def invoke_system_model(
|
|
cls,
|
|
user_id: str,
|
|
tenant: Tenant,
|
|
prompt_messages: list[PromptMessage],
|
|
) -> LLMResult:
|
|
"""
|
|
invoke system model
|
|
"""
|
|
return ModelInvocationUtils.invoke(
|
|
user_id=user_id,
|
|
tenant_id=tenant.id,
|
|
tool_type=ToolProviderType.PLUGIN,
|
|
tool_name="plugin",
|
|
prompt_messages=prompt_messages,
|
|
)
|
|
|
|
@classmethod
|
|
def invoke_summary(cls, user_id: str, tenant: Tenant, payload: RequestInvokeSummary):
|
|
"""
|
|
invoke summary
|
|
"""
|
|
max_tokens = cls.get_system_model_max_tokens(tenant_id=tenant.id)
|
|
content = payload.text
|
|
|
|
SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
|
|
and you can quickly aimed at the main point of an webpage and reproduce it in your own words but
|
|
retain the original meaning and keep the key points.
|
|
however, the text you got is too long, what you got is possible a part of the text.
|
|
Please summarize the text you got.
|
|
|
|
Here is the extra instruction you need to follow:
|
|
<extra_instruction>
|
|
{payload.instruction}
|
|
</extra_instruction>
|
|
"""
|
|
|
|
if (
|
|
cls.get_prompt_tokens(
|
|
tenant_id=tenant.id,
|
|
prompt_messages=[UserPromptMessage(content=content)],
|
|
)
|
|
< max_tokens * 0.6
|
|
):
|
|
return content
|
|
|
|
def get_prompt_tokens(content: str) -> int:
|
|
return cls.get_prompt_tokens(
|
|
tenant_id=tenant.id,
|
|
prompt_messages=[
|
|
SystemPromptMessage(content=SUMMARY_PROMPT.replace("{payload.instruction}", payload.instruction)),
|
|
UserPromptMessage(content=content),
|
|
],
|
|
)
|
|
|
|
def summarize(content: str) -> str:
|
|
summary = cls.invoke_system_model(
|
|
user_id=user_id,
|
|
tenant=tenant,
|
|
prompt_messages=[
|
|
SystemPromptMessage(content=SUMMARY_PROMPT.replace("{payload.instruction}", payload.instruction)),
|
|
UserPromptMessage(content=content),
|
|
],
|
|
)
|
|
|
|
assert isinstance(summary.message.content, str)
|
|
return summary.message.content
|
|
|
|
lines = content.split("\n")
|
|
new_lines: list[str] = []
|
|
# split long line into multiple lines
|
|
for i in range(len(lines)):
|
|
line = lines[i]
|
|
if not line.strip():
|
|
continue
|
|
if len(line) < max_tokens * 0.5:
|
|
new_lines.append(line)
|
|
elif get_prompt_tokens(line) > max_tokens * 0.7:
|
|
while get_prompt_tokens(line) > max_tokens * 0.7:
|
|
new_lines.append(line[: int(max_tokens * 0.5)])
|
|
line = line[int(max_tokens * 0.5) :]
|
|
new_lines.append(line)
|
|
else:
|
|
new_lines.append(line)
|
|
|
|
# merge lines into messages with max tokens
|
|
messages: list[str] = []
|
|
for i in new_lines: # type: ignore
|
|
if len(messages) == 0:
|
|
messages.append(i) # type: ignore
|
|
else:
|
|
if len(messages[-1]) + len(i) < max_tokens * 0.5: # type: ignore
|
|
messages[-1] += i # type: ignore
|
|
if get_prompt_tokens(messages[-1] + i) > max_tokens * 0.7: # type: ignore
|
|
messages.append(i) # type: ignore
|
|
else:
|
|
messages[-1] += i # type: ignore
|
|
|
|
summaries = []
|
|
for i in range(len(messages)):
|
|
message = messages[i]
|
|
summary = summarize(message)
|
|
summaries.append(summary)
|
|
|
|
result = "\n".join(summaries)
|
|
|
|
if (
|
|
cls.get_prompt_tokens(
|
|
tenant_id=tenant.id,
|
|
prompt_messages=[UserPromptMessage(content=result)],
|
|
)
|
|
> max_tokens * 0.7
|
|
):
|
|
return cls.invoke_summary(
|
|
user_id=user_id,
|
|
tenant=tenant,
|
|
payload=RequestInvokeSummary(text=result, instruction=payload.instruction),
|
|
)
|
|
|
|
return result
|