dify/api/core/tool/dataset_retriever_tool.py
Jyong 269a465fc4
Feat/improve vector database logic (#1193)
Co-authored-by: jyong <jyong@dify.ai>
2023-09-18 18:15:41 +08:00

169 lines
7.5 KiB
Python

import json
from typing import Type
from flask import current_app
from langchain.tools import BaseTool
from pydantic import Field, BaseModel
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.conversation_message_task import ConversationMessageTask
from core.embedding.cached_embedding import CacheEmbedding
from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
from core.index.vector_index.vector_index import VectorIndex
from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
from extensions.ext_database import db
from models.dataset import Dataset, DocumentSegment, Document
class DatasetRetrieverToolInput(BaseModel):
query: str = Field(..., description="Query for the dataset to be used to retrieve the dataset.")
class DatasetRetrieverTool(BaseTool):
"""Tool for querying a Dataset."""
name: str = "dataset"
args_schema: Type[BaseModel] = DatasetRetrieverToolInput
description: str = "use this to retrieve a dataset. "
tenant_id: str
dataset_id: str
k: int = 3
conversation_message_task: ConversationMessageTask
return_resource: str
retriever_from: str
@classmethod
def from_dataset(cls, dataset: Dataset, **kwargs):
description = dataset.description
if not description:
description = 'useful for when you want to answer queries about the ' + dataset.name
description = description.replace('\n', '').replace('\r', '')
return cls(
name=f'dataset-{dataset.id}',
tenant_id=dataset.tenant_id,
dataset_id=dataset.id,
description=description,
**kwargs
)
def _run(self, query: str) -> str:
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == self.tenant_id,
Dataset.id == self.dataset_id
).first()
if not dataset:
return f'[{self.name} failed to find dataset with id {self.dataset_id}.]'
if dataset.indexing_technique == "economy":
# use keyword table query
kw_table_index = KeywordTableIndex(
dataset=dataset,
config=KeywordTableConfig(
max_keywords_per_chunk=5
)
)
documents = kw_table_index.search(query, search_kwargs={'k': self.k})
return str("\n".join([document.page_content for document in documents]))
else:
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
return ''
except ProviderTokenNotInitError:
return ''
embeddings = CacheEmbedding(embedding_model)
vector_index = VectorIndex(
dataset=dataset,
config=current_app.config,
embeddings=embeddings
)
if self.k > 0:
documents = vector_index.search(
query,
search_type='similarity_score_threshold',
search_kwargs={
'k': self.k,
'filter': {
'group_id': [dataset.id]
}
}
)
else:
documents = []
hit_callback = DatasetIndexToolCallbackHandler(dataset.id, self.conversation_message_task)
hit_callback.on_tool_end(documents)
document_score_list = {}
if dataset.indexing_technique != "economy":
for item in documents:
document_score_list[item.metadata['doc_id']] = item.metadata['score']
document_context_list = []
index_node_ids = [document.metadata['doc_id'] for document in documents]
segments = DocumentSegment.query.filter(DocumentSegment.dataset_id == self.dataset_id,
DocumentSegment.completed_at.isnot(None),
DocumentSegment.status == 'completed',
DocumentSegment.enabled == True,
DocumentSegment.index_node_id.in_(index_node_ids)
).all()
if segments:
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
sorted_segments = sorted(segments,
key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
float('inf')))
for segment in sorted_segments:
if segment.answer:
document_context_list.append(f'question:{segment.content} answer:{segment.answer}')
else:
document_context_list.append(segment.content)
if self.return_resource:
context_list = []
resource_number = 1
for segment in sorted_segments:
context = {}
document = Document.query.filter(Document.id == segment.document_id,
Document.enabled == True,
Document.archived == False,
).first()
if dataset and document:
source = {
'position': resource_number,
'dataset_id': dataset.id,
'dataset_name': dataset.name,
'document_id': document.id,
'document_name': document.name,
'data_source_type': document.data_source_type,
'segment_id': segment.id,
'retriever_from': self.retriever_from
}
if dataset.indexing_technique != "economy":
source['score'] = document_score_list.get(segment.index_node_id)
if self.retriever_from == 'dev':
source['hit_count'] = segment.hit_count
source['word_count'] = segment.word_count
source['segment_position'] = segment.position
source['index_node_hash'] = segment.index_node_hash
if segment.answer:
source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
else:
source['content'] = segment.content
context_list.append(source)
resource_number += 1
hit_callback.return_retriever_resource_info(context_list)
return str("\n".join(document_context_list))
async def _arun(self, tool_input: str) -> str:
raise NotImplementedError()