mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-05-19 07:27:43 +08:00
104 lines
3.4 KiB
Python
104 lines
3.4 KiB
Python
import os
|
|
from collections.abc import Generator
|
|
|
|
import pytest
|
|
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
|
from core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessage
|
|
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
|
from core.model_runtime.model_providers.bedrock.llm.llm import BedrockLargeLanguageModel
|
|
|
|
|
|
def test_validate_credentials():
|
|
model = BedrockLargeLanguageModel()
|
|
|
|
with pytest.raises(CredentialsValidateFailedError):
|
|
model.validate_credentials(model="meta.llama2-13b-chat-v1", credentials={"anthropic_api_key": "invalid_key"})
|
|
|
|
model.validate_credentials(
|
|
model="meta.llama2-13b-chat-v1",
|
|
credentials={
|
|
"aws_region": os.getenv("AWS_REGION"),
|
|
"aws_access_key": os.getenv("AWS_ACCESS_KEY"),
|
|
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"),
|
|
},
|
|
)
|
|
|
|
|
|
def test_invoke_model():
|
|
model = BedrockLargeLanguageModel()
|
|
|
|
response = model.invoke(
|
|
model="meta.llama2-13b-chat-v1",
|
|
credentials={
|
|
"aws_region": os.getenv("AWS_REGION"),
|
|
"aws_access_key": os.getenv("AWS_ACCESS_KEY"),
|
|
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"),
|
|
},
|
|
prompt_messages=[
|
|
SystemPromptMessage(
|
|
content="You are a helpful AI assistant.",
|
|
),
|
|
UserPromptMessage(content="Hello World!"),
|
|
],
|
|
model_parameters={"temperature": 0.0, "top_p": 1.0, "max_tokens_to_sample": 10},
|
|
stop=["How"],
|
|
stream=False,
|
|
user="abc-123",
|
|
)
|
|
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.message.content) > 0
|
|
|
|
|
|
def test_invoke_stream_model():
|
|
model = BedrockLargeLanguageModel()
|
|
|
|
response = model.invoke(
|
|
model="meta.llama2-13b-chat-v1",
|
|
credentials={
|
|
"aws_region": os.getenv("AWS_REGION"),
|
|
"aws_access_key": os.getenv("AWS_ACCESS_KEY"),
|
|
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"),
|
|
},
|
|
prompt_messages=[
|
|
SystemPromptMessage(
|
|
content="You are a helpful AI assistant.",
|
|
),
|
|
UserPromptMessage(content="Hello World!"),
|
|
],
|
|
model_parameters={"temperature": 0.0, "max_tokens_to_sample": 100},
|
|
stream=True,
|
|
user="abc-123",
|
|
)
|
|
|
|
assert isinstance(response, Generator)
|
|
|
|
for chunk in response:
|
|
print(chunk)
|
|
assert isinstance(chunk, LLMResultChunk)
|
|
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
|
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
|
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
|
|
|
|
|
|
def test_get_num_tokens():
|
|
model = BedrockLargeLanguageModel()
|
|
|
|
num_tokens = model.get_num_tokens(
|
|
model="meta.llama2-13b-chat-v1",
|
|
credentials={
|
|
"aws_region": os.getenv("AWS_REGION"),
|
|
"aws_access_key": os.getenv("AWS_ACCESS_KEY"),
|
|
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"),
|
|
},
|
|
messages=[
|
|
SystemPromptMessage(
|
|
content="You are a helpful AI assistant.",
|
|
),
|
|
UserPromptMessage(content="Hello World!"),
|
|
],
|
|
)
|
|
|
|
assert num_tokens == 18
|