mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-05-13 19:08:15 +08:00
104 lines
3.0 KiB
Python
104 lines
3.0 KiB
Python
import os
|
|
from collections.abc import Generator
|
|
|
|
import pytest
|
|
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
|
from core.model_runtime.entities.message_entities import (
|
|
AssistantPromptMessage,
|
|
SystemPromptMessage,
|
|
UserPromptMessage,
|
|
)
|
|
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
|
from core.model_runtime.model_providers.openrouter.llm.llm import OpenRouterLargeLanguageModel
|
|
|
|
|
|
def test_validate_credentials():
|
|
model = OpenRouterLargeLanguageModel()
|
|
|
|
with pytest.raises(CredentialsValidateFailedError):
|
|
model.validate_credentials(
|
|
model="mistralai/mixtral-8x7b-instruct", credentials={"api_key": "invalid_key", "mode": "chat"}
|
|
)
|
|
|
|
model.validate_credentials(
|
|
model="mistralai/mixtral-8x7b-instruct",
|
|
credentials={"api_key": os.environ.get("TOGETHER_API_KEY"), "mode": "chat"},
|
|
)
|
|
|
|
|
|
def test_invoke_model():
|
|
model = OpenRouterLargeLanguageModel()
|
|
|
|
response = model.invoke(
|
|
model="mistralai/mixtral-8x7b-instruct",
|
|
credentials={"api_key": os.environ.get("TOGETHER_API_KEY"), "mode": "completion"},
|
|
prompt_messages=[
|
|
SystemPromptMessage(
|
|
content="You are a helpful AI assistant.",
|
|
),
|
|
UserPromptMessage(content="Who are you?"),
|
|
],
|
|
model_parameters={
|
|
"temperature": 1.0,
|
|
"top_k": 2,
|
|
"top_p": 0.5,
|
|
},
|
|
stop=["How"],
|
|
stream=False,
|
|
user="abc-123",
|
|
)
|
|
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.message.content) > 0
|
|
|
|
|
|
def test_invoke_stream_model():
|
|
model = OpenRouterLargeLanguageModel()
|
|
|
|
response = model.invoke(
|
|
model="mistralai/mixtral-8x7b-instruct",
|
|
credentials={"api_key": os.environ.get("TOGETHER_API_KEY"), "mode": "chat"},
|
|
prompt_messages=[
|
|
SystemPromptMessage(
|
|
content="You are a helpful AI assistant.",
|
|
),
|
|
UserPromptMessage(content="Who are you?"),
|
|
],
|
|
model_parameters={
|
|
"temperature": 1.0,
|
|
"top_k": 2,
|
|
"top_p": 0.5,
|
|
},
|
|
stop=["How"],
|
|
stream=True,
|
|
user="abc-123",
|
|
)
|
|
|
|
assert isinstance(response, Generator)
|
|
|
|
for chunk in response:
|
|
assert isinstance(chunk, LLMResultChunk)
|
|
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
|
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
|
|
|
|
|
def test_get_num_tokens():
|
|
model = OpenRouterLargeLanguageModel()
|
|
|
|
num_tokens = model.get_num_tokens(
|
|
model="mistralai/mixtral-8x7b-instruct",
|
|
credentials={
|
|
"api_key": os.environ.get("TOGETHER_API_KEY"),
|
|
},
|
|
prompt_messages=[
|
|
SystemPromptMessage(
|
|
content="You are a helpful AI assistant.",
|
|
),
|
|
UserPromptMessage(content="Hello World!"),
|
|
],
|
|
)
|
|
|
|
assert isinstance(num_tokens, int)
|
|
assert num_tokens == 21
|