mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-04-23 06:09:43 +08:00

Signed-off-by: -LAN- <laipz8200@outlook.com> Co-authored-by: -LAN- <laipz8200@outlook.com>
340 lines
14 KiB
Python
340 lines
14 KiB
Python
import threading
|
|
from typing import Optional
|
|
|
|
from flask import Flask, current_app
|
|
|
|
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
|
from core.rag.datasource.keyword.keyword_factory import Keyword
|
|
from core.rag.datasource.vdb.vector_factory import Vector
|
|
from core.rag.embedding.retrieval import RetrievalSegments
|
|
from core.rag.index_processor.constant.index_type import IndexType
|
|
from core.rag.models.document import Document
|
|
from core.rag.rerank.rerank_type import RerankMode
|
|
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
|
from extensions.ext_database import db
|
|
from models.dataset import ChildChunk, Dataset, DocumentSegment
|
|
from models.dataset import Document as DatasetDocument
|
|
from services.external_knowledge_service import ExternalDatasetService
|
|
|
|
default_retrieval_model = {
|
|
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
|
"reranking_enable": False,
|
|
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
|
|
"top_k": 2,
|
|
"score_threshold_enabled": False,
|
|
}
|
|
|
|
|
|
class RetrievalService:
|
|
@classmethod
|
|
def retrieve(
|
|
cls,
|
|
retrieval_method: str,
|
|
dataset_id: str,
|
|
query: str,
|
|
top_k: int,
|
|
score_threshold: Optional[float] = 0.0,
|
|
reranking_model: Optional[dict] = None,
|
|
reranking_mode: str = "reranking_model",
|
|
weights: Optional[dict] = None,
|
|
):
|
|
if not query:
|
|
return []
|
|
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
|
if not dataset:
|
|
return []
|
|
|
|
if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
|
|
return []
|
|
all_documents: list[Document] = []
|
|
threads: list[threading.Thread] = []
|
|
exceptions: list[str] = []
|
|
# retrieval_model source with keyword
|
|
if retrieval_method == "keyword_search":
|
|
keyword_thread = threading.Thread(
|
|
target=RetrievalService.keyword_search,
|
|
kwargs={
|
|
"flask_app": current_app._get_current_object(), # type: ignore
|
|
"dataset_id": dataset_id,
|
|
"query": query,
|
|
"top_k": top_k,
|
|
"all_documents": all_documents,
|
|
"exceptions": exceptions,
|
|
},
|
|
)
|
|
threads.append(keyword_thread)
|
|
keyword_thread.start()
|
|
# retrieval_model source with semantic
|
|
if RetrievalMethod.is_support_semantic_search(retrieval_method):
|
|
embedding_thread = threading.Thread(
|
|
target=RetrievalService.embedding_search,
|
|
kwargs={
|
|
"flask_app": current_app._get_current_object(), # type: ignore
|
|
"dataset_id": dataset_id,
|
|
"query": query,
|
|
"top_k": top_k,
|
|
"score_threshold": score_threshold,
|
|
"reranking_model": reranking_model,
|
|
"all_documents": all_documents,
|
|
"retrieval_method": retrieval_method,
|
|
"exceptions": exceptions,
|
|
},
|
|
)
|
|
threads.append(embedding_thread)
|
|
embedding_thread.start()
|
|
|
|
# retrieval source with full text
|
|
if RetrievalMethod.is_support_fulltext_search(retrieval_method):
|
|
full_text_index_thread = threading.Thread(
|
|
target=RetrievalService.full_text_index_search,
|
|
kwargs={
|
|
"flask_app": current_app._get_current_object(), # type: ignore
|
|
"dataset_id": dataset_id,
|
|
"query": query,
|
|
"retrieval_method": retrieval_method,
|
|
"score_threshold": score_threshold,
|
|
"top_k": top_k,
|
|
"reranking_model": reranking_model,
|
|
"all_documents": all_documents,
|
|
"exceptions": exceptions,
|
|
},
|
|
)
|
|
threads.append(full_text_index_thread)
|
|
full_text_index_thread.start()
|
|
|
|
for thread in threads:
|
|
thread.join()
|
|
|
|
if exceptions:
|
|
exception_message = ";\n".join(exceptions)
|
|
raise ValueError(exception_message)
|
|
|
|
if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
|
|
data_post_processor = DataPostProcessor(
|
|
str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
|
|
)
|
|
all_documents = data_post_processor.invoke(
|
|
query=query,
|
|
documents=all_documents,
|
|
score_threshold=score_threshold,
|
|
top_n=top_k,
|
|
)
|
|
|
|
return all_documents
|
|
|
|
@classmethod
|
|
def external_retrieve(cls, dataset_id: str, query: str, external_retrieval_model: Optional[dict] = None):
|
|
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
|
if not dataset:
|
|
return []
|
|
all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
|
|
dataset.tenant_id, dataset_id, query, external_retrieval_model or {}
|
|
)
|
|
return all_documents
|
|
|
|
@classmethod
|
|
def keyword_search(
|
|
cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
|
|
):
|
|
with flask_app.app_context():
|
|
try:
|
|
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
|
if not dataset:
|
|
raise ValueError("dataset not found")
|
|
|
|
keyword = Keyword(dataset=dataset)
|
|
|
|
documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
|
|
all_documents.extend(documents)
|
|
except Exception as e:
|
|
exceptions.append(str(e))
|
|
|
|
@classmethod
|
|
def embedding_search(
|
|
cls,
|
|
flask_app: Flask,
|
|
dataset_id: str,
|
|
query: str,
|
|
top_k: int,
|
|
score_threshold: Optional[float],
|
|
reranking_model: Optional[dict],
|
|
all_documents: list,
|
|
retrieval_method: str,
|
|
exceptions: list,
|
|
):
|
|
with flask_app.app_context():
|
|
try:
|
|
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
|
if not dataset:
|
|
raise ValueError("dataset not found")
|
|
|
|
vector = Vector(dataset=dataset)
|
|
|
|
documents = vector.search_by_vector(
|
|
cls.escape_query_for_search(query),
|
|
search_type="similarity_score_threshold",
|
|
top_k=top_k,
|
|
score_threshold=score_threshold,
|
|
filter={"group_id": [dataset.id]},
|
|
)
|
|
|
|
if documents:
|
|
if (
|
|
reranking_model
|
|
and reranking_model.get("reranking_model_name")
|
|
and reranking_model.get("reranking_provider_name")
|
|
and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
|
|
):
|
|
data_post_processor = DataPostProcessor(
|
|
str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
|
|
)
|
|
all_documents.extend(
|
|
data_post_processor.invoke(
|
|
query=query,
|
|
documents=documents,
|
|
score_threshold=score_threshold,
|
|
top_n=len(documents),
|
|
)
|
|
)
|
|
else:
|
|
all_documents.extend(documents)
|
|
except Exception as e:
|
|
exceptions.append(str(e))
|
|
|
|
@classmethod
|
|
def full_text_index_search(
|
|
cls,
|
|
flask_app: Flask,
|
|
dataset_id: str,
|
|
query: str,
|
|
top_k: int,
|
|
score_threshold: Optional[float],
|
|
reranking_model: Optional[dict],
|
|
all_documents: list,
|
|
retrieval_method: str,
|
|
exceptions: list,
|
|
):
|
|
with flask_app.app_context():
|
|
try:
|
|
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
|
if not dataset:
|
|
raise ValueError("dataset not found")
|
|
|
|
vector_processor = Vector(
|
|
dataset=dataset,
|
|
)
|
|
|
|
documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
|
|
if documents:
|
|
if (
|
|
reranking_model
|
|
and reranking_model.get("reranking_model_name")
|
|
and reranking_model.get("reranking_provider_name")
|
|
and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
|
|
):
|
|
data_post_processor = DataPostProcessor(
|
|
str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
|
|
)
|
|
all_documents.extend(
|
|
data_post_processor.invoke(
|
|
query=query,
|
|
documents=documents,
|
|
score_threshold=score_threshold,
|
|
top_n=len(documents),
|
|
)
|
|
)
|
|
else:
|
|
all_documents.extend(documents)
|
|
except Exception as e:
|
|
exceptions.append(str(e))
|
|
|
|
@staticmethod
|
|
def escape_query_for_search(query: str) -> str:
|
|
return query.replace('"', '\\"')
|
|
|
|
@staticmethod
|
|
def format_retrieval_documents(documents: list[Document]) -> list[RetrievalSegments]:
|
|
records = []
|
|
include_segment_ids = []
|
|
segment_child_map = {}
|
|
for document in documents:
|
|
document_id = document.metadata.get("document_id")
|
|
dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == document_id).first()
|
|
if dataset_document:
|
|
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
|
child_index_node_id = document.metadata.get("doc_id")
|
|
result = (
|
|
db.session.query(ChildChunk, DocumentSegment)
|
|
.join(DocumentSegment, ChildChunk.segment_id == DocumentSegment.id)
|
|
.filter(
|
|
ChildChunk.index_node_id == child_index_node_id,
|
|
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
|
DocumentSegment.enabled == True,
|
|
DocumentSegment.status == "completed",
|
|
)
|
|
.first()
|
|
)
|
|
if result:
|
|
child_chunk, segment = result
|
|
if not segment:
|
|
continue
|
|
if segment.id not in include_segment_ids:
|
|
include_segment_ids.append(segment.id)
|
|
child_chunk_detail = {
|
|
"id": child_chunk.id,
|
|
"content": child_chunk.content,
|
|
"position": child_chunk.position,
|
|
"score": document.metadata.get("score", 0.0),
|
|
}
|
|
map_detail = {
|
|
"max_score": document.metadata.get("score", 0.0),
|
|
"child_chunks": [child_chunk_detail],
|
|
}
|
|
segment_child_map[segment.id] = map_detail
|
|
record = {
|
|
"segment": segment,
|
|
}
|
|
records.append(record)
|
|
else:
|
|
child_chunk_detail = {
|
|
"id": child_chunk.id,
|
|
"content": child_chunk.content,
|
|
"position": child_chunk.position,
|
|
"score": document.metadata.get("score", 0.0),
|
|
}
|
|
segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
|
|
segment_child_map[segment.id]["max_score"] = max(
|
|
segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
|
|
)
|
|
else:
|
|
continue
|
|
else:
|
|
index_node_id = document.metadata["doc_id"]
|
|
|
|
segment = (
|
|
db.session.query(DocumentSegment)
|
|
.filter(
|
|
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
|
DocumentSegment.enabled == True,
|
|
DocumentSegment.status == "completed",
|
|
DocumentSegment.index_node_id == index_node_id,
|
|
)
|
|
.first()
|
|
)
|
|
|
|
if not segment:
|
|
continue
|
|
include_segment_ids.append(segment.id)
|
|
record = {
|
|
"segment": segment,
|
|
"score": document.metadata.get("score", None),
|
|
}
|
|
|
|
records.append(record)
|
|
for record in records:
|
|
if record["segment"].id in segment_child_map:
|
|
record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks", None)
|
|
record["score"] = segment_child_map[record["segment"].id]["max_score"]
|
|
|
|
return [RetrievalSegments(**record) for record in records]
|