mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-04-23 06:09:43 +08:00
2167 lines
98 KiB
Python
2167 lines
98 KiB
Python
import datetime
|
|
import json
|
|
import logging
|
|
import random
|
|
import time
|
|
import uuid
|
|
from collections import Counter
|
|
from typing import Any, Optional
|
|
|
|
from flask_login import current_user # type: ignore
|
|
from sqlalchemy import func
|
|
from sqlalchemy.orm import Session
|
|
from werkzeug.exceptions import NotFound
|
|
|
|
from configs import dify_config
|
|
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
|
|
from core.model_manager import ModelManager
|
|
from core.model_runtime.entities.model_entities import ModelType
|
|
from core.plugin.entities.plugin import ModelProviderID
|
|
from core.rag.index_processor.constant.index_type import IndexType
|
|
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
|
from events.dataset_event import dataset_was_deleted
|
|
from events.document_event import document_was_deleted
|
|
from extensions.ext_database import db
|
|
from extensions.ext_redis import redis_client
|
|
from libs import helper
|
|
from models.account import Account, TenantAccountRole
|
|
from models.dataset import (
|
|
AppDatasetJoin,
|
|
ChildChunk,
|
|
Dataset,
|
|
DatasetAutoDisableLog,
|
|
DatasetCollectionBinding,
|
|
DatasetPermission,
|
|
DatasetPermissionEnum,
|
|
DatasetProcessRule,
|
|
DatasetQuery,
|
|
Document,
|
|
DocumentSegment,
|
|
ExternalKnowledgeBindings,
|
|
)
|
|
from models.model import UploadFile
|
|
from models.source import DataSourceOauthBinding
|
|
from services.entities.knowledge_entities.knowledge_entities import (
|
|
ChildChunkUpdateArgs,
|
|
KnowledgeConfig,
|
|
MetaDataConfig,
|
|
RerankingModel,
|
|
RetrievalModel,
|
|
SegmentUpdateArgs,
|
|
)
|
|
from services.errors.account import InvalidActionError, NoPermissionError
|
|
from services.errors.chunk import ChildChunkDeleteIndexError, ChildChunkIndexingError
|
|
from services.errors.dataset import DatasetNameDuplicateError
|
|
from services.errors.document import DocumentIndexingError
|
|
from services.errors.file import FileNotExistsError
|
|
from services.external_knowledge_service import ExternalDatasetService
|
|
from services.feature_service import FeatureModel, FeatureService
|
|
from services.tag_service import TagService
|
|
from services.vector_service import VectorService
|
|
from tasks.batch_clean_document_task import batch_clean_document_task
|
|
from tasks.clean_notion_document_task import clean_notion_document_task
|
|
from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
|
|
from tasks.delete_segment_from_index_task import delete_segment_from_index_task
|
|
from tasks.disable_segment_from_index_task import disable_segment_from_index_task
|
|
from tasks.disable_segments_from_index_task import disable_segments_from_index_task
|
|
from tasks.document_indexing_task import document_indexing_task
|
|
from tasks.document_indexing_update_task import document_indexing_update_task
|
|
from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
|
|
from tasks.enable_segments_to_index_task import enable_segments_to_index_task
|
|
from tasks.recover_document_indexing_task import recover_document_indexing_task
|
|
from tasks.retry_document_indexing_task import retry_document_indexing_task
|
|
from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
|
|
|
|
|
|
class DatasetService:
|
|
@staticmethod
|
|
def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None, include_all=False):
|
|
query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc())
|
|
|
|
if user:
|
|
# get permitted dataset ids
|
|
dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all()
|
|
permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
|
|
|
|
if user.current_role == TenantAccountRole.DATASET_OPERATOR:
|
|
# only show datasets that the user has permission to access
|
|
if permitted_dataset_ids:
|
|
query = query.filter(Dataset.id.in_(permitted_dataset_ids))
|
|
else:
|
|
return [], 0
|
|
else:
|
|
if user.current_role != TenantAccountRole.OWNER or not include_all:
|
|
# show all datasets that the user has permission to access
|
|
if permitted_dataset_ids:
|
|
query = query.filter(
|
|
db.or_(
|
|
Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
|
|
db.and_(
|
|
Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
|
|
),
|
|
db.and_(
|
|
Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM,
|
|
Dataset.id.in_(permitted_dataset_ids),
|
|
),
|
|
)
|
|
)
|
|
else:
|
|
query = query.filter(
|
|
db.or_(
|
|
Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
|
|
db.and_(
|
|
Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
|
|
),
|
|
)
|
|
)
|
|
else:
|
|
# if no user, only show datasets that are shared with all team members
|
|
query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM)
|
|
|
|
if search:
|
|
query = query.filter(Dataset.name.ilike(f"%{search}%"))
|
|
|
|
if tag_ids:
|
|
target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids)
|
|
if target_ids:
|
|
query = query.filter(Dataset.id.in_(target_ids))
|
|
else:
|
|
return [], 0
|
|
|
|
datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
|
|
|
|
return datasets.items, datasets.total
|
|
|
|
@staticmethod
|
|
def get_process_rules(dataset_id):
|
|
# get the latest process rule
|
|
dataset_process_rule = (
|
|
db.session.query(DatasetProcessRule)
|
|
.filter(DatasetProcessRule.dataset_id == dataset_id)
|
|
.order_by(DatasetProcessRule.created_at.desc())
|
|
.limit(1)
|
|
.one_or_none()
|
|
)
|
|
if dataset_process_rule:
|
|
mode = dataset_process_rule.mode
|
|
rules = dataset_process_rule.rules_dict
|
|
else:
|
|
mode = DocumentService.DEFAULT_RULES["mode"]
|
|
rules = DocumentService.DEFAULT_RULES["rules"]
|
|
return {"mode": mode, "rules": rules}
|
|
|
|
@staticmethod
|
|
def get_datasets_by_ids(ids, tenant_id):
|
|
datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate(
|
|
page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
|
|
)
|
|
return datasets.items, datasets.total
|
|
|
|
@staticmethod
|
|
def create_empty_dataset(
|
|
tenant_id: str,
|
|
name: str,
|
|
description: Optional[str],
|
|
indexing_technique: Optional[str],
|
|
account: Account,
|
|
permission: Optional[str] = None,
|
|
provider: str = "vendor",
|
|
external_knowledge_api_id: Optional[str] = None,
|
|
external_knowledge_id: Optional[str] = None,
|
|
):
|
|
# check if dataset name already exists
|
|
if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
|
|
raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.")
|
|
embedding_model = None
|
|
if indexing_technique == "high_quality":
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_default_model_instance(
|
|
tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING
|
|
)
|
|
dataset = Dataset(name=name, indexing_technique=indexing_technique)
|
|
# dataset = Dataset(name=name, provider=provider, config=config)
|
|
dataset.description = description
|
|
dataset.created_by = account.id
|
|
dataset.updated_by = account.id
|
|
dataset.tenant_id = tenant_id
|
|
dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
|
|
dataset.embedding_model = embedding_model.model if embedding_model else None
|
|
dataset.permission = permission or DatasetPermissionEnum.ONLY_ME
|
|
dataset.provider = provider
|
|
db.session.add(dataset)
|
|
db.session.flush()
|
|
|
|
if provider == "external" and external_knowledge_api_id:
|
|
external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)
|
|
if not external_knowledge_api:
|
|
raise ValueError("External API template not found.")
|
|
external_knowledge_binding = ExternalKnowledgeBindings(
|
|
tenant_id=tenant_id,
|
|
dataset_id=dataset.id,
|
|
external_knowledge_api_id=external_knowledge_api_id,
|
|
external_knowledge_id=external_knowledge_id,
|
|
created_by=account.id,
|
|
)
|
|
db.session.add(external_knowledge_binding)
|
|
|
|
db.session.commit()
|
|
return dataset
|
|
|
|
@staticmethod
|
|
def get_dataset(dataset_id) -> Optional[Dataset]:
|
|
dataset: Optional[Dataset] = Dataset.query.filter_by(id=dataset_id).first()
|
|
return dataset
|
|
|
|
@staticmethod
|
|
def check_dataset_model_setting(dataset):
|
|
if dataset.indexing_technique == "high_quality":
|
|
try:
|
|
model_manager = ModelManager()
|
|
model_manager.get_model_instance(
|
|
tenant_id=dataset.tenant_id,
|
|
provider=dataset.embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=dataset.embedding_model,
|
|
)
|
|
except LLMBadRequestError:
|
|
raise ValueError(
|
|
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
|
)
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ValueError(f"The dataset in unavailable, due to: {ex.description}")
|
|
|
|
@staticmethod
|
|
def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str):
|
|
try:
|
|
model_manager = ModelManager()
|
|
model_manager.get_model_instance(
|
|
tenant_id=tenant_id,
|
|
provider=embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=embedding_model,
|
|
)
|
|
except LLMBadRequestError:
|
|
raise ValueError(
|
|
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
|
)
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ValueError(f"The dataset in unavailable, due to: {ex.description}")
|
|
|
|
@staticmethod
|
|
def update_dataset(dataset_id, data, user):
|
|
dataset = DatasetService.get_dataset(dataset_id)
|
|
if not dataset:
|
|
raise ValueError("Dataset not found")
|
|
|
|
DatasetService.check_dataset_permission(dataset, user)
|
|
if dataset.provider == "external":
|
|
external_retrieval_model = data.get("external_retrieval_model", None)
|
|
if external_retrieval_model:
|
|
dataset.retrieval_model = external_retrieval_model
|
|
dataset.name = data.get("name", dataset.name)
|
|
dataset.description = data.get("description", "")
|
|
permission = data.get("permission")
|
|
if permission:
|
|
dataset.permission = permission
|
|
external_knowledge_id = data.get("external_knowledge_id", None)
|
|
db.session.add(dataset)
|
|
if not external_knowledge_id:
|
|
raise ValueError("External knowledge id is required.")
|
|
external_knowledge_api_id = data.get("external_knowledge_api_id", None)
|
|
if not external_knowledge_api_id:
|
|
raise ValueError("External knowledge api id is required.")
|
|
|
|
with Session(db.engine) as session:
|
|
external_knowledge_binding = (
|
|
session.query(ExternalKnowledgeBindings).filter_by(dataset_id=dataset_id).first()
|
|
)
|
|
|
|
if not external_knowledge_binding:
|
|
raise ValueError("External knowledge binding not found.")
|
|
|
|
if (
|
|
external_knowledge_binding.external_knowledge_id != external_knowledge_id
|
|
or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id
|
|
):
|
|
external_knowledge_binding.external_knowledge_id = external_knowledge_id
|
|
external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id
|
|
db.session.add(external_knowledge_binding)
|
|
db.session.commit()
|
|
else:
|
|
data.pop("partial_member_list", None)
|
|
data.pop("external_knowledge_api_id", None)
|
|
data.pop("external_knowledge_id", None)
|
|
data.pop("external_retrieval_model", None)
|
|
filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
|
|
action = None
|
|
if dataset.indexing_technique != data["indexing_technique"]:
|
|
# if update indexing_technique
|
|
if data["indexing_technique"] == "economy":
|
|
action = "remove"
|
|
filtered_data["embedding_model"] = None
|
|
filtered_data["embedding_model_provider"] = None
|
|
filtered_data["collection_binding_id"] = None
|
|
elif data["indexing_technique"] == "high_quality":
|
|
action = "add"
|
|
# get embedding model setting
|
|
try:
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_model_instance(
|
|
tenant_id=current_user.current_tenant_id,
|
|
provider=data["embedding_model_provider"],
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=data["embedding_model"],
|
|
)
|
|
filtered_data["embedding_model"] = embedding_model.model
|
|
filtered_data["embedding_model_provider"] = embedding_model.provider
|
|
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
|
embedding_model.provider, embedding_model.model
|
|
)
|
|
filtered_data["collection_binding_id"] = dataset_collection_binding.id
|
|
except LLMBadRequestError:
|
|
raise ValueError(
|
|
"No Embedding Model available. Please configure a valid provider "
|
|
"in the Settings -> Model Provider."
|
|
)
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ValueError(ex.description)
|
|
else:
|
|
# add default plugin id to both setting sets, to make sure the plugin model provider is consistent
|
|
plugin_model_provider = dataset.embedding_model_provider
|
|
plugin_model_provider = str(ModelProviderID(plugin_model_provider))
|
|
|
|
new_plugin_model_provider = data["embedding_model_provider"]
|
|
new_plugin_model_provider = str(ModelProviderID(new_plugin_model_provider))
|
|
|
|
if (
|
|
new_plugin_model_provider != plugin_model_provider
|
|
or data["embedding_model"] != dataset.embedding_model
|
|
):
|
|
action = "update"
|
|
try:
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_model_instance(
|
|
tenant_id=current_user.current_tenant_id,
|
|
provider=data["embedding_model_provider"],
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=data["embedding_model"],
|
|
)
|
|
filtered_data["embedding_model"] = embedding_model.model
|
|
filtered_data["embedding_model_provider"] = embedding_model.provider
|
|
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
|
embedding_model.provider, embedding_model.model
|
|
)
|
|
filtered_data["collection_binding_id"] = dataset_collection_binding.id
|
|
except LLMBadRequestError:
|
|
raise ValueError(
|
|
"No Embedding Model available. Please configure a valid provider "
|
|
"in the Settings -> Model Provider."
|
|
)
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ValueError(ex.description)
|
|
|
|
filtered_data["updated_by"] = user.id
|
|
filtered_data["updated_at"] = datetime.datetime.now()
|
|
|
|
# update Retrieval model
|
|
filtered_data["retrieval_model"] = data["retrieval_model"]
|
|
|
|
dataset.query.filter_by(id=dataset_id).update(filtered_data)
|
|
|
|
db.session.commit()
|
|
if action:
|
|
deal_dataset_vector_index_task.delay(dataset_id, action)
|
|
return dataset
|
|
|
|
@staticmethod
|
|
def delete_dataset(dataset_id, user):
|
|
dataset = DatasetService.get_dataset(dataset_id)
|
|
|
|
if dataset is None:
|
|
return False
|
|
|
|
DatasetService.check_dataset_permission(dataset, user)
|
|
|
|
dataset_was_deleted.send(dataset)
|
|
|
|
db.session.delete(dataset)
|
|
db.session.commit()
|
|
return True
|
|
|
|
@staticmethod
|
|
def dataset_use_check(dataset_id) -> bool:
|
|
count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
|
|
if count > 0:
|
|
return True
|
|
return False
|
|
|
|
@staticmethod
|
|
def check_dataset_permission(dataset, user):
|
|
if dataset.tenant_id != user.current_tenant_id:
|
|
logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
|
|
raise NoPermissionError("You do not have permission to access this dataset.")
|
|
if user.current_role != TenantAccountRole.OWNER:
|
|
if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id:
|
|
logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
|
|
raise NoPermissionError("You do not have permission to access this dataset.")
|
|
if dataset.permission == "partial_members":
|
|
user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first()
|
|
if (
|
|
not user_permission
|
|
and dataset.tenant_id != user.current_tenant_id
|
|
and dataset.created_by != user.id
|
|
):
|
|
logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
|
|
raise NoPermissionError("You do not have permission to access this dataset.")
|
|
|
|
@staticmethod
|
|
def check_dataset_operator_permission(user: Optional[Account] = None, dataset: Optional[Dataset] = None):
|
|
if not dataset:
|
|
raise ValueError("Dataset not found")
|
|
|
|
if not user:
|
|
raise ValueError("User not found")
|
|
|
|
if user.current_role != TenantAccountRole.OWNER:
|
|
if dataset.permission == DatasetPermissionEnum.ONLY_ME:
|
|
if dataset.created_by != user.id:
|
|
raise NoPermissionError("You do not have permission to access this dataset.")
|
|
|
|
elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM:
|
|
if not any(
|
|
dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
|
|
):
|
|
raise NoPermissionError("You do not have permission to access this dataset.")
|
|
|
|
@staticmethod
|
|
def get_dataset_queries(dataset_id: str, page: int, per_page: int):
|
|
dataset_queries = (
|
|
DatasetQuery.query.filter_by(dataset_id=dataset_id)
|
|
.order_by(db.desc(DatasetQuery.created_at))
|
|
.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
|
|
)
|
|
return dataset_queries.items, dataset_queries.total
|
|
|
|
@staticmethod
|
|
def get_related_apps(dataset_id: str):
|
|
return (
|
|
AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id)
|
|
.order_by(db.desc(AppDatasetJoin.created_at))
|
|
.all()
|
|
)
|
|
|
|
@staticmethod
|
|
def get_dataset_auto_disable_logs(dataset_id: str) -> dict:
|
|
features = FeatureService.get_features(current_user.current_tenant_id)
|
|
if not features.billing.enabled or features.billing.subscription.plan == "sandbox":
|
|
return {
|
|
"document_ids": [],
|
|
"count": 0,
|
|
}
|
|
# get recent 30 days auto disable logs
|
|
start_date = datetime.datetime.now() - datetime.timedelta(days=30)
|
|
dataset_auto_disable_logs = DatasetAutoDisableLog.query.filter(
|
|
DatasetAutoDisableLog.dataset_id == dataset_id,
|
|
DatasetAutoDisableLog.created_at >= start_date,
|
|
).all()
|
|
if dataset_auto_disable_logs:
|
|
return {
|
|
"document_ids": [log.document_id for log in dataset_auto_disable_logs],
|
|
"count": len(dataset_auto_disable_logs),
|
|
}
|
|
return {
|
|
"document_ids": [],
|
|
"count": 0,
|
|
}
|
|
|
|
|
|
class DocumentService:
|
|
DEFAULT_RULES: dict[str, Any] = {
|
|
"mode": "custom",
|
|
"rules": {
|
|
"pre_processing_rules": [
|
|
{"id": "remove_extra_spaces", "enabled": True},
|
|
{"id": "remove_urls_emails", "enabled": False},
|
|
],
|
|
"segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},
|
|
},
|
|
"limits": {
|
|
"indexing_max_segmentation_tokens_length": dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH,
|
|
},
|
|
}
|
|
|
|
DOCUMENT_METADATA_SCHEMA: dict[str, Any] = {
|
|
"book": {
|
|
"title": str,
|
|
"language": str,
|
|
"author": str,
|
|
"publisher": str,
|
|
"publication_date": str,
|
|
"isbn": str,
|
|
"category": str,
|
|
},
|
|
"web_page": {
|
|
"title": str,
|
|
"url": str,
|
|
"language": str,
|
|
"publish_date": str,
|
|
"author/publisher": str,
|
|
"topic/keywords": str,
|
|
"description": str,
|
|
},
|
|
"paper": {
|
|
"title": str,
|
|
"language": str,
|
|
"author": str,
|
|
"publish_date": str,
|
|
"journal/conference_name": str,
|
|
"volume/issue/page_numbers": str,
|
|
"doi": str,
|
|
"topic/keywords": str,
|
|
"abstract": str,
|
|
},
|
|
"social_media_post": {
|
|
"platform": str,
|
|
"author/username": str,
|
|
"publish_date": str,
|
|
"post_url": str,
|
|
"topic/tags": str,
|
|
},
|
|
"wikipedia_entry": {
|
|
"title": str,
|
|
"language": str,
|
|
"web_page_url": str,
|
|
"last_edit_date": str,
|
|
"editor/contributor": str,
|
|
"summary/introduction": str,
|
|
},
|
|
"personal_document": {
|
|
"title": str,
|
|
"author": str,
|
|
"creation_date": str,
|
|
"last_modified_date": str,
|
|
"document_type": str,
|
|
"tags/category": str,
|
|
},
|
|
"business_document": {
|
|
"title": str,
|
|
"author": str,
|
|
"creation_date": str,
|
|
"last_modified_date": str,
|
|
"document_type": str,
|
|
"department/team": str,
|
|
},
|
|
"im_chat_log": {
|
|
"chat_platform": str,
|
|
"chat_participants/group_name": str,
|
|
"start_date": str,
|
|
"end_date": str,
|
|
"summary": str,
|
|
},
|
|
"synced_from_notion": {
|
|
"title": str,
|
|
"language": str,
|
|
"author/creator": str,
|
|
"creation_date": str,
|
|
"last_modified_date": str,
|
|
"notion_page_link": str,
|
|
"category/tags": str,
|
|
"description": str,
|
|
},
|
|
"synced_from_github": {
|
|
"repository_name": str,
|
|
"repository_description": str,
|
|
"repository_owner/organization": str,
|
|
"code_filename": str,
|
|
"code_file_path": str,
|
|
"programming_language": str,
|
|
"github_link": str,
|
|
"open_source_license": str,
|
|
"commit_date": str,
|
|
"commit_author": str,
|
|
},
|
|
"others": dict,
|
|
}
|
|
|
|
@staticmethod
|
|
def get_document(dataset_id: str, document_id: Optional[str] = None) -> Optional[Document]:
|
|
if document_id:
|
|
document = (
|
|
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
|
|
)
|
|
return document
|
|
else:
|
|
return None
|
|
|
|
@staticmethod
|
|
def get_document_by_id(document_id: str) -> Optional[Document]:
|
|
document = db.session.query(Document).filter(Document.id == document_id).first()
|
|
|
|
return document
|
|
|
|
@staticmethod
|
|
def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
|
|
documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, Document.enabled == True).all()
|
|
|
|
return documents
|
|
|
|
@staticmethod
|
|
def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
|
|
documents = (
|
|
db.session.query(Document)
|
|
.filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"]))
|
|
.all()
|
|
)
|
|
return documents
|
|
|
|
@staticmethod
|
|
def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
|
|
documents = (
|
|
db.session.query(Document)
|
|
.filter(
|
|
Document.batch == batch,
|
|
Document.dataset_id == dataset_id,
|
|
Document.tenant_id == current_user.current_tenant_id,
|
|
)
|
|
.all()
|
|
)
|
|
|
|
return documents
|
|
|
|
@staticmethod
|
|
def get_document_file_detail(file_id: str):
|
|
file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none()
|
|
return file_detail
|
|
|
|
@staticmethod
|
|
def check_archived(document):
|
|
if document.archived:
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
@staticmethod
|
|
def delete_document(document):
|
|
# trigger document_was_deleted signal
|
|
file_id = None
|
|
if document.data_source_type == "upload_file":
|
|
if document.data_source_info:
|
|
data_source_info = document.data_source_info_dict
|
|
if data_source_info and "upload_file_id" in data_source_info:
|
|
file_id = data_source_info["upload_file_id"]
|
|
document_was_deleted.send(
|
|
document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id
|
|
)
|
|
|
|
db.session.delete(document)
|
|
db.session.commit()
|
|
|
|
@staticmethod
|
|
def delete_documents(dataset: Dataset, document_ids: list[str]):
|
|
documents = db.session.query(Document).filter(Document.id.in_(document_ids)).all()
|
|
file_ids = [
|
|
document.data_source_info_dict["upload_file_id"]
|
|
for document in documents
|
|
if document.data_source_type == "upload_file"
|
|
]
|
|
batch_clean_document_task.delay(document_ids, dataset.id, dataset.doc_form, file_ids)
|
|
|
|
for document in documents:
|
|
db.session.delete(document)
|
|
db.session.commit()
|
|
|
|
@staticmethod
|
|
def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
|
|
dataset = DatasetService.get_dataset(dataset_id)
|
|
if not dataset:
|
|
raise ValueError("Dataset not found.")
|
|
|
|
document = DocumentService.get_document(dataset_id, document_id)
|
|
|
|
if not document:
|
|
raise ValueError("Document not found.")
|
|
|
|
if document.tenant_id != current_user.current_tenant_id:
|
|
raise ValueError("No permission.")
|
|
|
|
document.name = name
|
|
|
|
db.session.add(document)
|
|
db.session.commit()
|
|
|
|
return document
|
|
|
|
@staticmethod
|
|
def pause_document(document):
|
|
if document.indexing_status not in {"waiting", "parsing", "cleaning", "splitting", "indexing"}:
|
|
raise DocumentIndexingError()
|
|
# update document to be paused
|
|
document.is_paused = True
|
|
document.paused_by = current_user.id
|
|
document.paused_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
|
|
|
db.session.add(document)
|
|
db.session.commit()
|
|
# set document paused flag
|
|
indexing_cache_key = "document_{}_is_paused".format(document.id)
|
|
redis_client.setnx(indexing_cache_key, "True")
|
|
|
|
@staticmethod
|
|
def recover_document(document):
|
|
if not document.is_paused:
|
|
raise DocumentIndexingError()
|
|
# update document to be recover
|
|
document.is_paused = False
|
|
document.paused_by = None
|
|
document.paused_at = None
|
|
|
|
db.session.add(document)
|
|
db.session.commit()
|
|
# delete paused flag
|
|
indexing_cache_key = "document_{}_is_paused".format(document.id)
|
|
redis_client.delete(indexing_cache_key)
|
|
# trigger async task
|
|
recover_document_indexing_task.delay(document.dataset_id, document.id)
|
|
|
|
@staticmethod
|
|
def retry_document(dataset_id: str, documents: list[Document]):
|
|
for document in documents:
|
|
# add retry flag
|
|
retry_indexing_cache_key = "document_{}_is_retried".format(document.id)
|
|
cache_result = redis_client.get(retry_indexing_cache_key)
|
|
if cache_result is not None:
|
|
raise ValueError("Document is being retried, please try again later")
|
|
# retry document indexing
|
|
document.indexing_status = "waiting"
|
|
db.session.add(document)
|
|
db.session.commit()
|
|
|
|
redis_client.setex(retry_indexing_cache_key, 600, 1)
|
|
# trigger async task
|
|
document_ids = [document.id for document in documents]
|
|
retry_document_indexing_task.delay(dataset_id, document_ids)
|
|
|
|
@staticmethod
|
|
def sync_website_document(dataset_id: str, document: Document):
|
|
# add sync flag
|
|
sync_indexing_cache_key = "document_{}_is_sync".format(document.id)
|
|
cache_result = redis_client.get(sync_indexing_cache_key)
|
|
if cache_result is not None:
|
|
raise ValueError("Document is being synced, please try again later")
|
|
# sync document indexing
|
|
document.indexing_status = "waiting"
|
|
data_source_info = document.data_source_info_dict
|
|
data_source_info["mode"] = "scrape"
|
|
document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
|
|
db.session.add(document)
|
|
db.session.commit()
|
|
|
|
redis_client.setex(sync_indexing_cache_key, 600, 1)
|
|
|
|
sync_website_document_indexing_task.delay(dataset_id, document.id)
|
|
|
|
@staticmethod
|
|
def get_documents_position(dataset_id):
|
|
document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
|
|
if document:
|
|
return document.position + 1
|
|
else:
|
|
return 1
|
|
|
|
@staticmethod
|
|
def save_document_with_dataset_id(
|
|
dataset: Dataset,
|
|
knowledge_config: KnowledgeConfig,
|
|
account: Account | Any,
|
|
dataset_process_rule: Optional[DatasetProcessRule] = None,
|
|
created_from: str = "web",
|
|
):
|
|
# check document limit
|
|
features = FeatureService.get_features(current_user.current_tenant_id)
|
|
|
|
if features.billing.enabled:
|
|
if not knowledge_config.original_document_id:
|
|
count = 0
|
|
if knowledge_config.data_source:
|
|
if knowledge_config.data_source.info_list.data_source_type == "upload_file":
|
|
upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
|
|
count = len(upload_file_list)
|
|
elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
|
|
notion_info_list = knowledge_config.data_source.info_list.notion_info_list
|
|
for notion_info in notion_info_list: # type: ignore
|
|
count = count + len(notion_info.pages)
|
|
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
|
|
website_info = knowledge_config.data_source.info_list.website_info_list
|
|
count = len(website_info.urls) # type: ignore
|
|
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
|
|
if count > batch_upload_limit:
|
|
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
|
|
|
|
DocumentService.check_documents_upload_quota(count, features)
|
|
|
|
# if dataset is empty, update dataset data_source_type
|
|
if not dataset.data_source_type:
|
|
dataset.data_source_type = knowledge_config.data_source.info_list.data_source_type # type: ignore
|
|
|
|
if not dataset.indexing_technique:
|
|
if knowledge_config.indexing_technique not in Dataset.INDEXING_TECHNIQUE_LIST:
|
|
raise ValueError("Indexing technique is invalid")
|
|
|
|
dataset.indexing_technique = knowledge_config.indexing_technique
|
|
if knowledge_config.indexing_technique == "high_quality":
|
|
model_manager = ModelManager()
|
|
if knowledge_config.embedding_model and knowledge_config.embedding_model_provider:
|
|
dataset_embedding_model = knowledge_config.embedding_model
|
|
dataset_embedding_model_provider = knowledge_config.embedding_model_provider
|
|
else:
|
|
embedding_model = model_manager.get_default_model_instance(
|
|
tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
|
|
)
|
|
dataset_embedding_model = embedding_model.model
|
|
dataset_embedding_model_provider = embedding_model.provider
|
|
dataset.embedding_model = dataset_embedding_model
|
|
dataset.embedding_model_provider = dataset_embedding_model_provider
|
|
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
|
dataset_embedding_model_provider, dataset_embedding_model
|
|
)
|
|
dataset.collection_binding_id = dataset_collection_binding.id
|
|
if not dataset.retrieval_model:
|
|
default_retrieval_model = {
|
|
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
|
"reranking_enable": False,
|
|
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
|
|
"top_k": 2,
|
|
"score_threshold_enabled": False,
|
|
}
|
|
|
|
dataset.retrieval_model = (
|
|
knowledge_config.retrieval_model.model_dump()
|
|
if knowledge_config.retrieval_model
|
|
else default_retrieval_model
|
|
) # type: ignore
|
|
|
|
documents = []
|
|
if knowledge_config.original_document_id:
|
|
document = DocumentService.update_document_with_dataset_id(dataset, knowledge_config, account)
|
|
documents.append(document)
|
|
batch = document.batch
|
|
else:
|
|
batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))
|
|
# save process rule
|
|
if not dataset_process_rule:
|
|
process_rule = knowledge_config.process_rule
|
|
if process_rule:
|
|
if process_rule.mode in ("custom", "hierarchical"):
|
|
dataset_process_rule = DatasetProcessRule(
|
|
dataset_id=dataset.id,
|
|
mode=process_rule.mode,
|
|
rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
|
|
created_by=account.id,
|
|
)
|
|
elif process_rule.mode == "automatic":
|
|
dataset_process_rule = DatasetProcessRule(
|
|
dataset_id=dataset.id,
|
|
mode=process_rule.mode,
|
|
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
|
|
created_by=account.id,
|
|
)
|
|
else:
|
|
logging.warn(
|
|
f"Invalid process rule mode: {process_rule.mode}, can not find dataset process rule"
|
|
)
|
|
return
|
|
db.session.add(dataset_process_rule)
|
|
db.session.commit()
|
|
lock_name = "add_document_lock_dataset_id_{}".format(dataset.id)
|
|
with redis_client.lock(lock_name, timeout=600):
|
|
position = DocumentService.get_documents_position(dataset.id)
|
|
document_ids = []
|
|
duplicate_document_ids = []
|
|
if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
|
|
upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
|
|
for file_id in upload_file_list:
|
|
file = (
|
|
db.session.query(UploadFile)
|
|
.filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
|
|
.first()
|
|
)
|
|
|
|
# raise error if file not found
|
|
if not file:
|
|
raise FileNotExistsError()
|
|
|
|
file_name = file.name
|
|
data_source_info = {
|
|
"upload_file_id": file_id,
|
|
}
|
|
# check duplicate
|
|
if knowledge_config.duplicate:
|
|
document = Document.query.filter_by(
|
|
dataset_id=dataset.id,
|
|
tenant_id=current_user.current_tenant_id,
|
|
data_source_type="upload_file",
|
|
enabled=True,
|
|
name=file_name,
|
|
).first()
|
|
if document:
|
|
document.dataset_process_rule_id = dataset_process_rule.id # type: ignore
|
|
document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
document.created_from = created_from
|
|
document.doc_form = knowledge_config.doc_form
|
|
document.doc_language = knowledge_config.doc_language
|
|
document.data_source_info = json.dumps(data_source_info)
|
|
document.batch = batch
|
|
document.indexing_status = "waiting"
|
|
if knowledge_config.metadata:
|
|
document.doc_type = knowledge_config.metadata.doc_type
|
|
document.metadata = knowledge_config.metadata.doc_metadata
|
|
db.session.add(document)
|
|
documents.append(document)
|
|
duplicate_document_ids.append(document.id)
|
|
continue
|
|
document = DocumentService.build_document(
|
|
dataset,
|
|
dataset_process_rule.id, # type: ignore
|
|
knowledge_config.data_source.info_list.data_source_type, # type: ignore
|
|
knowledge_config.doc_form,
|
|
knowledge_config.doc_language,
|
|
data_source_info,
|
|
created_from,
|
|
position,
|
|
account,
|
|
file_name,
|
|
batch,
|
|
knowledge_config.metadata,
|
|
)
|
|
db.session.add(document)
|
|
db.session.flush()
|
|
document_ids.append(document.id)
|
|
documents.append(document)
|
|
position += 1
|
|
elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
|
|
notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
|
|
if not notion_info_list:
|
|
raise ValueError("No notion info list found.")
|
|
exist_page_ids = []
|
|
exist_document = {}
|
|
documents = Document.query.filter_by(
|
|
dataset_id=dataset.id,
|
|
tenant_id=current_user.current_tenant_id,
|
|
data_source_type="notion_import",
|
|
enabled=True,
|
|
).all()
|
|
if documents:
|
|
for document in documents:
|
|
data_source_info = json.loads(document.data_source_info)
|
|
exist_page_ids.append(data_source_info["notion_page_id"])
|
|
exist_document[data_source_info["notion_page_id"]] = document.id
|
|
for notion_info in notion_info_list:
|
|
workspace_id = notion_info.workspace_id
|
|
data_source_binding = DataSourceOauthBinding.query.filter(
|
|
db.and_(
|
|
DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
|
|
DataSourceOauthBinding.provider == "notion",
|
|
DataSourceOauthBinding.disabled == False,
|
|
DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
|
|
)
|
|
).first()
|
|
if not data_source_binding:
|
|
raise ValueError("Data source binding not found.")
|
|
for page in notion_info.pages:
|
|
if page.page_id not in exist_page_ids:
|
|
data_source_info = {
|
|
"notion_workspace_id": workspace_id,
|
|
"notion_page_id": page.page_id,
|
|
"notion_page_icon": page.page_icon.model_dump() if page.page_icon else None,
|
|
"type": page.type,
|
|
}
|
|
# Truncate page name to 255 characters to prevent DB field length errors
|
|
truncated_page_name = page.page_name[:255] if page.page_name else "nopagename"
|
|
document = DocumentService.build_document(
|
|
dataset,
|
|
dataset_process_rule.id, # type: ignore
|
|
knowledge_config.data_source.info_list.data_source_type, # type: ignore
|
|
knowledge_config.doc_form,
|
|
knowledge_config.doc_language,
|
|
data_source_info,
|
|
created_from,
|
|
position,
|
|
account,
|
|
truncated_page_name,
|
|
batch,
|
|
knowledge_config.metadata,
|
|
)
|
|
db.session.add(document)
|
|
db.session.flush()
|
|
document_ids.append(document.id)
|
|
documents.append(document)
|
|
position += 1
|
|
else:
|
|
exist_document.pop(page.page_id)
|
|
# delete not selected documents
|
|
if len(exist_document) > 0:
|
|
clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
|
|
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
|
|
website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
|
|
if not website_info:
|
|
raise ValueError("No website info list found.")
|
|
urls = website_info.urls
|
|
for url in urls:
|
|
data_source_info = {
|
|
"url": url,
|
|
"provider": website_info.provider,
|
|
"job_id": website_info.job_id,
|
|
"only_main_content": website_info.only_main_content,
|
|
"mode": "crawl",
|
|
}
|
|
if len(url) > 255:
|
|
document_name = url[:200] + "..."
|
|
else:
|
|
document_name = url
|
|
document = DocumentService.build_document(
|
|
dataset,
|
|
dataset_process_rule.id, # type: ignore
|
|
knowledge_config.data_source.info_list.data_source_type, # type: ignore
|
|
knowledge_config.doc_form,
|
|
knowledge_config.doc_language,
|
|
data_source_info,
|
|
created_from,
|
|
position,
|
|
account,
|
|
document_name,
|
|
batch,
|
|
knowledge_config.metadata,
|
|
)
|
|
db.session.add(document)
|
|
db.session.flush()
|
|
document_ids.append(document.id)
|
|
documents.append(document)
|
|
position += 1
|
|
db.session.commit()
|
|
|
|
# trigger async task
|
|
if document_ids:
|
|
document_indexing_task.delay(dataset.id, document_ids)
|
|
if duplicate_document_ids:
|
|
duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
|
|
|
|
return documents, batch
|
|
|
|
@staticmethod
|
|
def check_documents_upload_quota(count: int, features: FeatureModel):
|
|
can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
|
|
if count > can_upload_size:
|
|
raise ValueError(
|
|
f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded."
|
|
)
|
|
|
|
@staticmethod
|
|
def build_document(
|
|
dataset: Dataset,
|
|
process_rule_id: str,
|
|
data_source_type: str,
|
|
document_form: str,
|
|
document_language: str,
|
|
data_source_info: dict,
|
|
created_from: str,
|
|
position: int,
|
|
account: Account,
|
|
name: str,
|
|
batch: str,
|
|
metadata: Optional[MetaDataConfig] = None,
|
|
):
|
|
document = Document(
|
|
tenant_id=dataset.tenant_id,
|
|
dataset_id=dataset.id,
|
|
position=position,
|
|
data_source_type=data_source_type,
|
|
data_source_info=json.dumps(data_source_info),
|
|
dataset_process_rule_id=process_rule_id,
|
|
batch=batch,
|
|
name=name,
|
|
created_from=created_from,
|
|
created_by=account.id,
|
|
doc_form=document_form,
|
|
doc_language=document_language,
|
|
)
|
|
if metadata is not None:
|
|
document.doc_metadata = metadata.doc_metadata
|
|
document.doc_type = metadata.doc_type
|
|
return document
|
|
|
|
@staticmethod
|
|
def get_tenant_documents_count():
|
|
documents_count = Document.query.filter(
|
|
Document.completed_at.isnot(None),
|
|
Document.enabled == True,
|
|
Document.archived == False,
|
|
Document.tenant_id == current_user.current_tenant_id,
|
|
).count()
|
|
return documents_count
|
|
|
|
@staticmethod
|
|
def update_document_with_dataset_id(
|
|
dataset: Dataset,
|
|
document_data: KnowledgeConfig,
|
|
account: Account,
|
|
dataset_process_rule: Optional[DatasetProcessRule] = None,
|
|
created_from: str = "web",
|
|
):
|
|
DatasetService.check_dataset_model_setting(dataset)
|
|
document = DocumentService.get_document(dataset.id, document_data.original_document_id)
|
|
if document is None:
|
|
raise NotFound("Document not found")
|
|
if document.display_status != "available":
|
|
raise ValueError("Document is not available")
|
|
# save process rule
|
|
if document_data.process_rule:
|
|
process_rule = document_data.process_rule
|
|
if process_rule.mode in {"custom", "hierarchical"}:
|
|
dataset_process_rule = DatasetProcessRule(
|
|
dataset_id=dataset.id,
|
|
mode=process_rule.mode,
|
|
rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
|
|
created_by=account.id,
|
|
)
|
|
elif process_rule.mode == "automatic":
|
|
dataset_process_rule = DatasetProcessRule(
|
|
dataset_id=dataset.id,
|
|
mode=process_rule.mode,
|
|
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
|
|
created_by=account.id,
|
|
)
|
|
if dataset_process_rule is not None:
|
|
db.session.add(dataset_process_rule)
|
|
db.session.commit()
|
|
document.dataset_process_rule_id = dataset_process_rule.id
|
|
# update document data source
|
|
if document_data.data_source:
|
|
file_name = ""
|
|
data_source_info = {}
|
|
if document_data.data_source.info_list.data_source_type == "upload_file":
|
|
if not document_data.data_source.info_list.file_info_list:
|
|
raise ValueError("No file info list found.")
|
|
upload_file_list = document_data.data_source.info_list.file_info_list.file_ids
|
|
for file_id in upload_file_list:
|
|
file = (
|
|
db.session.query(UploadFile)
|
|
.filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
|
|
.first()
|
|
)
|
|
|
|
# raise error if file not found
|
|
if not file:
|
|
raise FileNotExistsError()
|
|
|
|
file_name = file.name
|
|
data_source_info = {
|
|
"upload_file_id": file_id,
|
|
}
|
|
elif document_data.data_source.info_list.data_source_type == "notion_import":
|
|
if not document_data.data_source.info_list.notion_info_list:
|
|
raise ValueError("No notion info list found.")
|
|
notion_info_list = document_data.data_source.info_list.notion_info_list
|
|
for notion_info in notion_info_list:
|
|
workspace_id = notion_info.workspace_id
|
|
data_source_binding = DataSourceOauthBinding.query.filter(
|
|
db.and_(
|
|
DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
|
|
DataSourceOauthBinding.provider == "notion",
|
|
DataSourceOauthBinding.disabled == False,
|
|
DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
|
|
)
|
|
).first()
|
|
if not data_source_binding:
|
|
raise ValueError("Data source binding not found.")
|
|
for page in notion_info.pages:
|
|
data_source_info = {
|
|
"notion_workspace_id": workspace_id,
|
|
"notion_page_id": page.page_id,
|
|
"notion_page_icon": page.page_icon.model_dump() if page.page_icon else None, # type: ignore
|
|
"type": page.type,
|
|
}
|
|
elif document_data.data_source.info_list.data_source_type == "website_crawl":
|
|
website_info = document_data.data_source.info_list.website_info_list
|
|
if website_info:
|
|
urls = website_info.urls
|
|
for url in urls:
|
|
data_source_info = {
|
|
"url": url,
|
|
"provider": website_info.provider,
|
|
"job_id": website_info.job_id,
|
|
"only_main_content": website_info.only_main_content, # type: ignore
|
|
"mode": "crawl",
|
|
}
|
|
document.data_source_type = document_data.data_source.info_list.data_source_type
|
|
document.data_source_info = json.dumps(data_source_info)
|
|
document.name = file_name
|
|
|
|
# update document name
|
|
if document_data.name:
|
|
document.name = document_data.name
|
|
# update doc_type and doc_metadata if provided
|
|
if document_data.metadata is not None:
|
|
document.doc_metadata = document_data.metadata.doc_type
|
|
document.doc_type = document_data.metadata.doc_type
|
|
# update document to be waiting
|
|
document.indexing_status = "waiting"
|
|
document.completed_at = None
|
|
document.processing_started_at = None
|
|
document.parsing_completed_at = None
|
|
document.cleaning_completed_at = None
|
|
document.splitting_completed_at = None
|
|
document.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
|
document.created_from = created_from
|
|
document.doc_form = document_data.doc_form
|
|
db.session.add(document)
|
|
db.session.commit()
|
|
# update document segment
|
|
update_params = {DocumentSegment.status: "re_segment"}
|
|
DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
|
|
db.session.commit()
|
|
# trigger async task
|
|
document_indexing_update_task.delay(document.dataset_id, document.id)
|
|
return document
|
|
|
|
@staticmethod
|
|
def save_document_without_dataset_id(tenant_id: str, knowledge_config: KnowledgeConfig, account: Account):
|
|
features = FeatureService.get_features(current_user.current_tenant_id)
|
|
|
|
if features.billing.enabled:
|
|
count = 0
|
|
if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
|
|
upload_file_list = (
|
|
knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
|
|
if knowledge_config.data_source.info_list.file_info_list # type: ignore
|
|
else []
|
|
)
|
|
count = len(upload_file_list)
|
|
elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
|
|
notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
|
|
if notion_info_list:
|
|
for notion_info in notion_info_list:
|
|
count = count + len(notion_info.pages)
|
|
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
|
|
website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
|
|
if website_info:
|
|
count = len(website_info.urls)
|
|
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
|
|
if count > batch_upload_limit:
|
|
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
|
|
|
|
DocumentService.check_documents_upload_quota(count, features)
|
|
|
|
dataset_collection_binding_id = None
|
|
retrieval_model = None
|
|
if knowledge_config.indexing_technique == "high_quality":
|
|
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
|
knowledge_config.embedding_model_provider, # type: ignore
|
|
knowledge_config.embedding_model, # type: ignore
|
|
)
|
|
dataset_collection_binding_id = dataset_collection_binding.id
|
|
if knowledge_config.retrieval_model:
|
|
retrieval_model = knowledge_config.retrieval_model
|
|
else:
|
|
retrieval_model = RetrievalModel(
|
|
search_method=RetrievalMethod.SEMANTIC_SEARCH.value,
|
|
reranking_enable=False,
|
|
reranking_model=RerankingModel(reranking_provider_name="", reranking_model_name=""),
|
|
top_k=2,
|
|
score_threshold_enabled=False,
|
|
)
|
|
# save dataset
|
|
dataset = Dataset(
|
|
tenant_id=tenant_id,
|
|
name="",
|
|
data_source_type=knowledge_config.data_source.info_list.data_source_type, # type: ignore
|
|
indexing_technique=knowledge_config.indexing_technique,
|
|
created_by=account.id,
|
|
embedding_model=knowledge_config.embedding_model,
|
|
embedding_model_provider=knowledge_config.embedding_model_provider,
|
|
collection_binding_id=dataset_collection_binding_id,
|
|
retrieval_model=retrieval_model.model_dump() if retrieval_model else None,
|
|
)
|
|
|
|
db.session.add(dataset) # type: ignore
|
|
db.session.flush()
|
|
|
|
documents, batch = DocumentService.save_document_with_dataset_id(dataset, knowledge_config, account)
|
|
|
|
cut_length = 18
|
|
cut_name = documents[0].name[:cut_length]
|
|
dataset.name = cut_name + "..."
|
|
dataset.description = "useful for when you want to answer queries about the " + documents[0].name
|
|
db.session.commit()
|
|
|
|
return dataset, documents, batch
|
|
|
|
@classmethod
|
|
def document_create_args_validate(cls, knowledge_config: KnowledgeConfig):
|
|
if not knowledge_config.data_source and not knowledge_config.process_rule:
|
|
raise ValueError("Data source or Process rule is required")
|
|
else:
|
|
if knowledge_config.data_source:
|
|
DocumentService.data_source_args_validate(knowledge_config)
|
|
if knowledge_config.process_rule:
|
|
DocumentService.process_rule_args_validate(knowledge_config)
|
|
|
|
@classmethod
|
|
def data_source_args_validate(cls, knowledge_config: KnowledgeConfig):
|
|
if not knowledge_config.data_source:
|
|
raise ValueError("Data source is required")
|
|
|
|
if knowledge_config.data_source.info_list.data_source_type not in Document.DATA_SOURCES:
|
|
raise ValueError("Data source type is invalid")
|
|
|
|
if not knowledge_config.data_source.info_list:
|
|
raise ValueError("Data source info is required")
|
|
|
|
if knowledge_config.data_source.info_list.data_source_type == "upload_file":
|
|
if not knowledge_config.data_source.info_list.file_info_list:
|
|
raise ValueError("File source info is required")
|
|
if knowledge_config.data_source.info_list.data_source_type == "notion_import":
|
|
if not knowledge_config.data_source.info_list.notion_info_list:
|
|
raise ValueError("Notion source info is required")
|
|
if knowledge_config.data_source.info_list.data_source_type == "website_crawl":
|
|
if not knowledge_config.data_source.info_list.website_info_list:
|
|
raise ValueError("Website source info is required")
|
|
|
|
@classmethod
|
|
def process_rule_args_validate(cls, knowledge_config: KnowledgeConfig):
|
|
if not knowledge_config.process_rule:
|
|
raise ValueError("Process rule is required")
|
|
|
|
if not knowledge_config.process_rule.mode:
|
|
raise ValueError("Process rule mode is required")
|
|
|
|
if knowledge_config.process_rule.mode not in DatasetProcessRule.MODES:
|
|
raise ValueError("Process rule mode is invalid")
|
|
|
|
if knowledge_config.process_rule.mode == "automatic":
|
|
knowledge_config.process_rule.rules = None
|
|
else:
|
|
if not knowledge_config.process_rule.rules:
|
|
raise ValueError("Process rule rules is required")
|
|
|
|
if knowledge_config.process_rule.rules.pre_processing_rules is None:
|
|
raise ValueError("Process rule pre_processing_rules is required")
|
|
|
|
unique_pre_processing_rule_dicts = {}
|
|
for pre_processing_rule in knowledge_config.process_rule.rules.pre_processing_rules:
|
|
if not pre_processing_rule.id:
|
|
raise ValueError("Process rule pre_processing_rules id is required")
|
|
|
|
if not isinstance(pre_processing_rule.enabled, bool):
|
|
raise ValueError("Process rule pre_processing_rules enabled is invalid")
|
|
|
|
unique_pre_processing_rule_dicts[pre_processing_rule.id] = pre_processing_rule
|
|
|
|
knowledge_config.process_rule.rules.pre_processing_rules = list(unique_pre_processing_rule_dicts.values())
|
|
|
|
if not knowledge_config.process_rule.rules.segmentation:
|
|
raise ValueError("Process rule segmentation is required")
|
|
|
|
if not knowledge_config.process_rule.rules.segmentation.separator:
|
|
raise ValueError("Process rule segmentation separator is required")
|
|
|
|
if not isinstance(knowledge_config.process_rule.rules.segmentation.separator, str):
|
|
raise ValueError("Process rule segmentation separator is invalid")
|
|
|
|
if not (
|
|
knowledge_config.process_rule.mode == "hierarchical"
|
|
and knowledge_config.process_rule.rules.parent_mode == "full-doc"
|
|
):
|
|
if not knowledge_config.process_rule.rules.segmentation.max_tokens:
|
|
raise ValueError("Process rule segmentation max_tokens is required")
|
|
|
|
if not isinstance(knowledge_config.process_rule.rules.segmentation.max_tokens, int):
|
|
raise ValueError("Process rule segmentation max_tokens is invalid")
|
|
|
|
@classmethod
|
|
def estimate_args_validate(cls, args: dict):
|
|
if "info_list" not in args or not args["info_list"]:
|
|
raise ValueError("Data source info is required")
|
|
|
|
if not isinstance(args["info_list"], dict):
|
|
raise ValueError("Data info is invalid")
|
|
|
|
if "process_rule" not in args or not args["process_rule"]:
|
|
raise ValueError("Process rule is required")
|
|
|
|
if not isinstance(args["process_rule"], dict):
|
|
raise ValueError("Process rule is invalid")
|
|
|
|
if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:
|
|
raise ValueError("Process rule mode is required")
|
|
|
|
if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:
|
|
raise ValueError("Process rule mode is invalid")
|
|
|
|
if args["process_rule"]["mode"] == "automatic":
|
|
args["process_rule"]["rules"] = {}
|
|
else:
|
|
if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:
|
|
raise ValueError("Process rule rules is required")
|
|
|
|
if not isinstance(args["process_rule"]["rules"], dict):
|
|
raise ValueError("Process rule rules is invalid")
|
|
|
|
if (
|
|
"pre_processing_rules" not in args["process_rule"]["rules"]
|
|
or args["process_rule"]["rules"]["pre_processing_rules"] is None
|
|
):
|
|
raise ValueError("Process rule pre_processing_rules is required")
|
|
|
|
if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):
|
|
raise ValueError("Process rule pre_processing_rules is invalid")
|
|
|
|
unique_pre_processing_rule_dicts = {}
|
|
for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:
|
|
if "id" not in pre_processing_rule or not pre_processing_rule["id"]:
|
|
raise ValueError("Process rule pre_processing_rules id is required")
|
|
|
|
if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:
|
|
raise ValueError("Process rule pre_processing_rules id is invalid")
|
|
|
|
if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:
|
|
raise ValueError("Process rule pre_processing_rules enabled is required")
|
|
|
|
if not isinstance(pre_processing_rule["enabled"], bool):
|
|
raise ValueError("Process rule pre_processing_rules enabled is invalid")
|
|
|
|
unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule
|
|
|
|
args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())
|
|
|
|
if (
|
|
"segmentation" not in args["process_rule"]["rules"]
|
|
or args["process_rule"]["rules"]["segmentation"] is None
|
|
):
|
|
raise ValueError("Process rule segmentation is required")
|
|
|
|
if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):
|
|
raise ValueError("Process rule segmentation is invalid")
|
|
|
|
if (
|
|
"separator" not in args["process_rule"]["rules"]["segmentation"]
|
|
or not args["process_rule"]["rules"]["segmentation"]["separator"]
|
|
):
|
|
raise ValueError("Process rule segmentation separator is required")
|
|
|
|
if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):
|
|
raise ValueError("Process rule segmentation separator is invalid")
|
|
|
|
if (
|
|
"max_tokens" not in args["process_rule"]["rules"]["segmentation"]
|
|
or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]
|
|
):
|
|
raise ValueError("Process rule segmentation max_tokens is required")
|
|
|
|
if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
|
|
raise ValueError("Process rule segmentation max_tokens is invalid")
|
|
|
|
|
|
class SegmentService:
|
|
@classmethod
|
|
def segment_create_args_validate(cls, args: dict, document: Document):
|
|
if document.doc_form == "qa_model":
|
|
if "answer" not in args or not args["answer"]:
|
|
raise ValueError("Answer is required")
|
|
if not args["answer"].strip():
|
|
raise ValueError("Answer is empty")
|
|
if "content" not in args or not args["content"] or not args["content"].strip():
|
|
raise ValueError("Content is empty")
|
|
|
|
@classmethod
|
|
def create_segment(cls, args: dict, document: Document, dataset: Dataset):
|
|
content = args["content"]
|
|
doc_id = str(uuid.uuid4())
|
|
segment_hash = helper.generate_text_hash(content)
|
|
tokens = 0
|
|
if dataset.indexing_technique == "high_quality":
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_model_instance(
|
|
tenant_id=current_user.current_tenant_id,
|
|
provider=dataset.embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=dataset.embedding_model,
|
|
)
|
|
# calc embedding use tokens
|
|
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
|
|
lock_name = "add_segment_lock_document_id_{}".format(document.id)
|
|
with redis_client.lock(lock_name, timeout=600):
|
|
max_position = (
|
|
db.session.query(func.max(DocumentSegment.position))
|
|
.filter(DocumentSegment.document_id == document.id)
|
|
.scalar()
|
|
)
|
|
segment_document = DocumentSegment(
|
|
tenant_id=current_user.current_tenant_id,
|
|
dataset_id=document.dataset_id,
|
|
document_id=document.id,
|
|
index_node_id=doc_id,
|
|
index_node_hash=segment_hash,
|
|
position=max_position + 1 if max_position else 1,
|
|
content=content,
|
|
word_count=len(content),
|
|
tokens=tokens,
|
|
status="completed",
|
|
indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
|
|
completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
|
|
created_by=current_user.id,
|
|
)
|
|
if document.doc_form == "qa_model":
|
|
segment_document.word_count += len(args["answer"])
|
|
segment_document.answer = args["answer"]
|
|
|
|
db.session.add(segment_document)
|
|
# update document word count
|
|
document.word_count += segment_document.word_count
|
|
db.session.add(document)
|
|
db.session.commit()
|
|
|
|
# save vector index
|
|
try:
|
|
VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset, document.doc_form)
|
|
except Exception as e:
|
|
logging.exception("create segment index failed")
|
|
segment_document.enabled = False
|
|
segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
|
segment_document.status = "error"
|
|
segment_document.error = str(e)
|
|
db.session.commit()
|
|
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
|
|
return segment
|
|
|
|
@classmethod
|
|
def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
|
|
lock_name = "multi_add_segment_lock_document_id_{}".format(document.id)
|
|
increment_word_count = 0
|
|
with redis_client.lock(lock_name, timeout=600):
|
|
embedding_model = None
|
|
if dataset.indexing_technique == "high_quality":
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_model_instance(
|
|
tenant_id=current_user.current_tenant_id,
|
|
provider=dataset.embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=dataset.embedding_model,
|
|
)
|
|
max_position = (
|
|
db.session.query(func.max(DocumentSegment.position))
|
|
.filter(DocumentSegment.document_id == document.id)
|
|
.scalar()
|
|
)
|
|
pre_segment_data_list = []
|
|
segment_data_list = []
|
|
keywords_list = []
|
|
position = max_position + 1 if max_position else 1
|
|
for segment_item in segments:
|
|
content = segment_item["content"]
|
|
doc_id = str(uuid.uuid4())
|
|
segment_hash = helper.generate_text_hash(content)
|
|
tokens = 0
|
|
if dataset.indexing_technique == "high_quality" and embedding_model:
|
|
# calc embedding use tokens
|
|
if document.doc_form == "qa_model":
|
|
tokens = embedding_model.get_text_embedding_num_tokens(
|
|
texts=[content + segment_item["answer"]]
|
|
)[0]
|
|
else:
|
|
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
|
|
|
|
segment_document = DocumentSegment(
|
|
tenant_id=current_user.current_tenant_id,
|
|
dataset_id=document.dataset_id,
|
|
document_id=document.id,
|
|
index_node_id=doc_id,
|
|
index_node_hash=segment_hash,
|
|
position=position,
|
|
content=content,
|
|
word_count=len(content),
|
|
tokens=tokens,
|
|
status="completed",
|
|
indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
|
|
completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
|
|
created_by=current_user.id,
|
|
)
|
|
if document.doc_form == "qa_model":
|
|
segment_document.answer = segment_item["answer"]
|
|
segment_document.word_count += len(segment_item["answer"])
|
|
increment_word_count += segment_document.word_count
|
|
db.session.add(segment_document)
|
|
segment_data_list.append(segment_document)
|
|
position += 1
|
|
|
|
pre_segment_data_list.append(segment_document)
|
|
if "keywords" in segment_item:
|
|
keywords_list.append(segment_item["keywords"])
|
|
else:
|
|
keywords_list.append(None)
|
|
# update document word count
|
|
document.word_count += increment_word_count
|
|
db.session.add(document)
|
|
try:
|
|
# save vector index
|
|
VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset, document.doc_form)
|
|
except Exception as e:
|
|
logging.exception("create segment index failed")
|
|
for segment_document in segment_data_list:
|
|
segment_document.enabled = False
|
|
segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
|
segment_document.status = "error"
|
|
segment_document.error = str(e)
|
|
db.session.commit()
|
|
return segment_data_list
|
|
|
|
@classmethod
|
|
def update_segment(cls, args: SegmentUpdateArgs, segment: DocumentSegment, document: Document, dataset: Dataset):
|
|
indexing_cache_key = "segment_{}_indexing".format(segment.id)
|
|
cache_result = redis_client.get(indexing_cache_key)
|
|
if cache_result is not None:
|
|
raise ValueError("Segment is indexing, please try again later")
|
|
if args.enabled is not None:
|
|
action = args.enabled
|
|
if segment.enabled != action:
|
|
if not action:
|
|
segment.enabled = action
|
|
segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
|
segment.disabled_by = current_user.id
|
|
db.session.add(segment)
|
|
db.session.commit()
|
|
# Set cache to prevent indexing the same segment multiple times
|
|
redis_client.setex(indexing_cache_key, 600, 1)
|
|
disable_segment_from_index_task.delay(segment.id)
|
|
return segment
|
|
if not segment.enabled:
|
|
if args.enabled is not None:
|
|
if not args.enabled:
|
|
raise ValueError("Can't update disabled segment")
|
|
else:
|
|
raise ValueError("Can't update disabled segment")
|
|
try:
|
|
word_count_change = segment.word_count
|
|
content = args.content or segment.content
|
|
if segment.content == content:
|
|
segment.word_count = len(content)
|
|
if document.doc_form == "qa_model":
|
|
segment.answer = args.answer
|
|
segment.word_count += len(args.answer) if args.answer else 0
|
|
word_count_change = segment.word_count - word_count_change
|
|
keyword_changed = False
|
|
if args.keywords:
|
|
if Counter(segment.keywords) != Counter(args.keywords):
|
|
segment.keywords = args.keywords
|
|
keyword_changed = True
|
|
segment.enabled = True
|
|
segment.disabled_at = None
|
|
segment.disabled_by = None
|
|
db.session.add(segment)
|
|
db.session.commit()
|
|
# update document word count
|
|
if word_count_change != 0:
|
|
document.word_count = max(0, document.word_count + word_count_change)
|
|
db.session.add(document)
|
|
# update segment index task
|
|
if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
|
|
# regenerate child chunks
|
|
# get embedding model instance
|
|
if dataset.indexing_technique == "high_quality":
|
|
# check embedding model setting
|
|
model_manager = ModelManager()
|
|
|
|
if dataset.embedding_model_provider:
|
|
embedding_model_instance = model_manager.get_model_instance(
|
|
tenant_id=dataset.tenant_id,
|
|
provider=dataset.embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=dataset.embedding_model,
|
|
)
|
|
else:
|
|
embedding_model_instance = model_manager.get_default_model_instance(
|
|
tenant_id=dataset.tenant_id,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
)
|
|
else:
|
|
raise ValueError("The knowledge base index technique is not high quality!")
|
|
# get the process rule
|
|
processing_rule = (
|
|
db.session.query(DatasetProcessRule)
|
|
.filter(DatasetProcessRule.id == document.dataset_process_rule_id)
|
|
.first()
|
|
)
|
|
if not processing_rule:
|
|
raise ValueError("No processing rule found.")
|
|
VectorService.generate_child_chunks(
|
|
segment, document, dataset, embedding_model_instance, processing_rule, True
|
|
)
|
|
elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
|
|
if args.enabled or keyword_changed:
|
|
VectorService.create_segments_vector(
|
|
[args.keywords] if args.keywords else None,
|
|
[segment],
|
|
dataset,
|
|
document.doc_form,
|
|
)
|
|
else:
|
|
segment_hash = helper.generate_text_hash(content)
|
|
tokens = 0
|
|
if dataset.indexing_technique == "high_quality":
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_model_instance(
|
|
tenant_id=current_user.current_tenant_id,
|
|
provider=dataset.embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=dataset.embedding_model,
|
|
)
|
|
|
|
# calc embedding use tokens
|
|
if document.doc_form == "qa_model":
|
|
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment.answer])[0]
|
|
else:
|
|
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
|
|
segment.content = content
|
|
segment.index_node_hash = segment_hash
|
|
segment.word_count = len(content)
|
|
segment.tokens = tokens
|
|
segment.status = "completed"
|
|
segment.indexing_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
|
segment.completed_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
|
segment.updated_by = current_user.id
|
|
segment.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
|
segment.enabled = True
|
|
segment.disabled_at = None
|
|
segment.disabled_by = None
|
|
if document.doc_form == "qa_model":
|
|
segment.answer = args.answer
|
|
segment.word_count += len(args.answer) if args.answer else 0
|
|
word_count_change = segment.word_count - word_count_change
|
|
# update document word count
|
|
if word_count_change != 0:
|
|
document.word_count = max(0, document.word_count + word_count_change)
|
|
db.session.add(document)
|
|
db.session.add(segment)
|
|
db.session.commit()
|
|
if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
|
|
# get embedding model instance
|
|
if dataset.indexing_technique == "high_quality":
|
|
# check embedding model setting
|
|
model_manager = ModelManager()
|
|
|
|
if dataset.embedding_model_provider:
|
|
embedding_model_instance = model_manager.get_model_instance(
|
|
tenant_id=dataset.tenant_id,
|
|
provider=dataset.embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=dataset.embedding_model,
|
|
)
|
|
else:
|
|
embedding_model_instance = model_manager.get_default_model_instance(
|
|
tenant_id=dataset.tenant_id,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
)
|
|
else:
|
|
raise ValueError("The knowledge base index technique is not high quality!")
|
|
# get the process rule
|
|
processing_rule = (
|
|
db.session.query(DatasetProcessRule)
|
|
.filter(DatasetProcessRule.id == document.dataset_process_rule_id)
|
|
.first()
|
|
)
|
|
if not processing_rule:
|
|
raise ValueError("No processing rule found.")
|
|
VectorService.generate_child_chunks(
|
|
segment, document, dataset, embedding_model_instance, processing_rule, True
|
|
)
|
|
elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
|
|
# update segment vector index
|
|
VectorService.update_segment_vector(args.keywords, segment, dataset)
|
|
|
|
except Exception as e:
|
|
logging.exception("update segment index failed")
|
|
segment.enabled = False
|
|
segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
|
segment.status = "error"
|
|
segment.error = str(e)
|
|
db.session.commit()
|
|
new_segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
|
|
return new_segment
|
|
|
|
@classmethod
|
|
def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
|
|
indexing_cache_key = "segment_{}_delete_indexing".format(segment.id)
|
|
cache_result = redis_client.get(indexing_cache_key)
|
|
if cache_result is not None:
|
|
raise ValueError("Segment is deleting.")
|
|
|
|
# enabled segment need to delete index
|
|
if segment.enabled:
|
|
# send delete segment index task
|
|
redis_client.setex(indexing_cache_key, 600, 1)
|
|
delete_segment_from_index_task.delay([segment.index_node_id], dataset.id, document.id)
|
|
db.session.delete(segment)
|
|
# update document word count
|
|
document.word_count -= segment.word_count
|
|
db.session.add(document)
|
|
db.session.commit()
|
|
|
|
@classmethod
|
|
def delete_segments(cls, segment_ids: list, document: Document, dataset: Dataset):
|
|
index_node_ids = (
|
|
DocumentSegment.query.with_entities(DocumentSegment.index_node_id)
|
|
.filter(
|
|
DocumentSegment.id.in_(segment_ids),
|
|
DocumentSegment.dataset_id == dataset.id,
|
|
DocumentSegment.document_id == document.id,
|
|
DocumentSegment.tenant_id == current_user.current_tenant_id,
|
|
)
|
|
.all()
|
|
)
|
|
index_node_ids = [index_node_id[0] for index_node_id in index_node_ids]
|
|
|
|
delete_segment_from_index_task.delay(index_node_ids, dataset.id, document.id)
|
|
db.session.query(DocumentSegment).filter(DocumentSegment.id.in_(segment_ids)).delete()
|
|
db.session.commit()
|
|
|
|
@classmethod
|
|
def update_segments_status(cls, segment_ids: list, action: str, dataset: Dataset, document: Document):
|
|
if action == "enable":
|
|
segments = (
|
|
db.session.query(DocumentSegment)
|
|
.filter(
|
|
DocumentSegment.id.in_(segment_ids),
|
|
DocumentSegment.dataset_id == dataset.id,
|
|
DocumentSegment.document_id == document.id,
|
|
DocumentSegment.enabled == False,
|
|
)
|
|
.all()
|
|
)
|
|
if not segments:
|
|
return
|
|
real_deal_segmment_ids = []
|
|
for segment in segments:
|
|
indexing_cache_key = "segment_{}_indexing".format(segment.id)
|
|
cache_result = redis_client.get(indexing_cache_key)
|
|
if cache_result is not None:
|
|
continue
|
|
segment.enabled = True
|
|
segment.disabled_at = None
|
|
segment.disabled_by = None
|
|
db.session.add(segment)
|
|
real_deal_segmment_ids.append(segment.id)
|
|
db.session.commit()
|
|
|
|
enable_segments_to_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
|
|
elif action == "disable":
|
|
segments = (
|
|
db.session.query(DocumentSegment)
|
|
.filter(
|
|
DocumentSegment.id.in_(segment_ids),
|
|
DocumentSegment.dataset_id == dataset.id,
|
|
DocumentSegment.document_id == document.id,
|
|
DocumentSegment.enabled == True,
|
|
)
|
|
.all()
|
|
)
|
|
if not segments:
|
|
return
|
|
real_deal_segmment_ids = []
|
|
for segment in segments:
|
|
indexing_cache_key = "segment_{}_indexing".format(segment.id)
|
|
cache_result = redis_client.get(indexing_cache_key)
|
|
if cache_result is not None:
|
|
continue
|
|
segment.enabled = False
|
|
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
segment.disabled_by = current_user.id
|
|
db.session.add(segment)
|
|
real_deal_segmment_ids.append(segment.id)
|
|
db.session.commit()
|
|
|
|
disable_segments_from_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
|
|
else:
|
|
raise InvalidActionError()
|
|
|
|
@classmethod
|
|
def create_child_chunk(
|
|
cls, content: str, segment: DocumentSegment, document: Document, dataset: Dataset
|
|
) -> ChildChunk:
|
|
lock_name = "add_child_lock_{}".format(segment.id)
|
|
with redis_client.lock(lock_name, timeout=20):
|
|
index_node_id = str(uuid.uuid4())
|
|
index_node_hash = helper.generate_text_hash(content)
|
|
child_chunk_count = (
|
|
db.session.query(ChildChunk)
|
|
.filter(
|
|
ChildChunk.tenant_id == current_user.current_tenant_id,
|
|
ChildChunk.dataset_id == dataset.id,
|
|
ChildChunk.document_id == document.id,
|
|
ChildChunk.segment_id == segment.id,
|
|
)
|
|
.count()
|
|
)
|
|
max_position = (
|
|
db.session.query(func.max(ChildChunk.position))
|
|
.filter(
|
|
ChildChunk.tenant_id == current_user.current_tenant_id,
|
|
ChildChunk.dataset_id == dataset.id,
|
|
ChildChunk.document_id == document.id,
|
|
ChildChunk.segment_id == segment.id,
|
|
)
|
|
.scalar()
|
|
)
|
|
child_chunk = ChildChunk(
|
|
tenant_id=current_user.current_tenant_id,
|
|
dataset_id=dataset.id,
|
|
document_id=document.id,
|
|
segment_id=segment.id,
|
|
position=max_position + 1,
|
|
index_node_id=index_node_id,
|
|
index_node_hash=index_node_hash,
|
|
content=content,
|
|
word_count=len(content),
|
|
type="customized",
|
|
created_by=current_user.id,
|
|
)
|
|
db.session.add(child_chunk)
|
|
# save vector index
|
|
try:
|
|
VectorService.create_child_chunk_vector(child_chunk, dataset)
|
|
except Exception as e:
|
|
logging.exception("create child chunk index failed")
|
|
db.session.rollback()
|
|
raise ChildChunkIndexingError(str(e))
|
|
db.session.commit()
|
|
|
|
return child_chunk
|
|
|
|
@classmethod
|
|
def update_child_chunks(
|
|
cls,
|
|
child_chunks_update_args: list[ChildChunkUpdateArgs],
|
|
segment: DocumentSegment,
|
|
document: Document,
|
|
dataset: Dataset,
|
|
) -> list[ChildChunk]:
|
|
child_chunks = (
|
|
db.session.query(ChildChunk)
|
|
.filter(
|
|
ChildChunk.dataset_id == dataset.id,
|
|
ChildChunk.document_id == document.id,
|
|
ChildChunk.segment_id == segment.id,
|
|
)
|
|
.all()
|
|
)
|
|
child_chunks_map = {chunk.id: chunk for chunk in child_chunks}
|
|
|
|
new_child_chunks, update_child_chunks, delete_child_chunks, new_child_chunks_args = [], [], [], []
|
|
|
|
for child_chunk_update_args in child_chunks_update_args:
|
|
if child_chunk_update_args.id:
|
|
child_chunk = child_chunks_map.pop(child_chunk_update_args.id, None)
|
|
if child_chunk:
|
|
if child_chunk.content != child_chunk_update_args.content:
|
|
child_chunk.content = child_chunk_update_args.content
|
|
child_chunk.word_count = len(child_chunk.content)
|
|
child_chunk.updated_by = current_user.id
|
|
child_chunk.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
child_chunk.type = "customized"
|
|
update_child_chunks.append(child_chunk)
|
|
else:
|
|
new_child_chunks_args.append(child_chunk_update_args)
|
|
if child_chunks_map:
|
|
delete_child_chunks = list(child_chunks_map.values())
|
|
try:
|
|
if update_child_chunks:
|
|
db.session.bulk_save_objects(update_child_chunks)
|
|
|
|
if delete_child_chunks:
|
|
for child_chunk in delete_child_chunks:
|
|
db.session.delete(child_chunk)
|
|
if new_child_chunks_args:
|
|
child_chunk_count = len(child_chunks)
|
|
for position, args in enumerate(new_child_chunks_args, start=child_chunk_count + 1):
|
|
index_node_id = str(uuid.uuid4())
|
|
index_node_hash = helper.generate_text_hash(args.content)
|
|
child_chunk = ChildChunk(
|
|
tenant_id=current_user.current_tenant_id,
|
|
dataset_id=dataset.id,
|
|
document_id=document.id,
|
|
segment_id=segment.id,
|
|
position=position,
|
|
index_node_id=index_node_id,
|
|
index_node_hash=index_node_hash,
|
|
content=args.content,
|
|
word_count=len(args.content),
|
|
type="customized",
|
|
created_by=current_user.id,
|
|
)
|
|
|
|
db.session.add(child_chunk)
|
|
db.session.flush()
|
|
new_child_chunks.append(child_chunk)
|
|
VectorService.update_child_chunk_vector(new_child_chunks, update_child_chunks, delete_child_chunks, dataset)
|
|
db.session.commit()
|
|
except Exception as e:
|
|
logging.exception("update child chunk index failed")
|
|
db.session.rollback()
|
|
raise ChildChunkIndexingError(str(e))
|
|
return sorted(new_child_chunks + update_child_chunks, key=lambda x: x.position)
|
|
|
|
@classmethod
|
|
def update_child_chunk(
|
|
cls,
|
|
content: str,
|
|
child_chunk: ChildChunk,
|
|
segment: DocumentSegment,
|
|
document: Document,
|
|
dataset: Dataset,
|
|
) -> ChildChunk:
|
|
try:
|
|
child_chunk.content = content
|
|
child_chunk.word_count = len(content)
|
|
child_chunk.updated_by = current_user.id
|
|
child_chunk.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
child_chunk.type = "customized"
|
|
db.session.add(child_chunk)
|
|
VectorService.update_child_chunk_vector([], [child_chunk], [], dataset)
|
|
db.session.commit()
|
|
except Exception as e:
|
|
logging.exception("update child chunk index failed")
|
|
db.session.rollback()
|
|
raise ChildChunkIndexingError(str(e))
|
|
return child_chunk
|
|
|
|
@classmethod
|
|
def delete_child_chunk(cls, child_chunk: ChildChunk, dataset: Dataset):
|
|
db.session.delete(child_chunk)
|
|
try:
|
|
VectorService.delete_child_chunk_vector(child_chunk, dataset)
|
|
except Exception as e:
|
|
logging.exception("delete child chunk index failed")
|
|
db.session.rollback()
|
|
raise ChildChunkDeleteIndexError(str(e))
|
|
db.session.commit()
|
|
|
|
@classmethod
|
|
def get_child_chunks(
|
|
cls, segment_id: str, document_id: str, dataset_id: str, page: int, limit: int, keyword: Optional[str] = None
|
|
):
|
|
query = ChildChunk.query.filter_by(
|
|
tenant_id=current_user.current_tenant_id,
|
|
dataset_id=dataset_id,
|
|
document_id=document_id,
|
|
segment_id=segment_id,
|
|
).order_by(ChildChunk.position.asc())
|
|
if keyword:
|
|
query = query.where(ChildChunk.content.ilike(f"%{keyword}%"))
|
|
return query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
|
|
|
|
|
|
class DatasetCollectionBindingService:
|
|
@classmethod
|
|
def get_dataset_collection_binding(
|
|
cls, provider_name: str, model_name: str, collection_type: str = "dataset"
|
|
) -> DatasetCollectionBinding:
|
|
dataset_collection_binding = (
|
|
db.session.query(DatasetCollectionBinding)
|
|
.filter(
|
|
DatasetCollectionBinding.provider_name == provider_name,
|
|
DatasetCollectionBinding.model_name == model_name,
|
|
DatasetCollectionBinding.type == collection_type,
|
|
)
|
|
.order_by(DatasetCollectionBinding.created_at)
|
|
.first()
|
|
)
|
|
|
|
if not dataset_collection_binding:
|
|
dataset_collection_binding = DatasetCollectionBinding(
|
|
provider_name=provider_name,
|
|
model_name=model_name,
|
|
collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
|
|
type=collection_type,
|
|
)
|
|
db.session.add(dataset_collection_binding)
|
|
db.session.commit()
|
|
return dataset_collection_binding
|
|
|
|
@classmethod
|
|
def get_dataset_collection_binding_by_id_and_type(
|
|
cls, collection_binding_id: str, collection_type: str = "dataset"
|
|
) -> DatasetCollectionBinding:
|
|
dataset_collection_binding = (
|
|
db.session.query(DatasetCollectionBinding)
|
|
.filter(
|
|
DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type
|
|
)
|
|
.order_by(DatasetCollectionBinding.created_at)
|
|
.first()
|
|
)
|
|
if not dataset_collection_binding:
|
|
raise ValueError("Dataset collection binding not found")
|
|
|
|
return dataset_collection_binding
|
|
|
|
|
|
class DatasetPermissionService:
|
|
@classmethod
|
|
def get_dataset_partial_member_list(cls, dataset_id):
|
|
user_list_query = (
|
|
db.session.query(
|
|
DatasetPermission.account_id,
|
|
)
|
|
.filter(DatasetPermission.dataset_id == dataset_id)
|
|
.all()
|
|
)
|
|
|
|
user_list = []
|
|
for user in user_list_query:
|
|
user_list.append(user.account_id)
|
|
|
|
return user_list
|
|
|
|
@classmethod
|
|
def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
|
|
try:
|
|
db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
|
|
permissions = []
|
|
for user in user_list:
|
|
permission = DatasetPermission(
|
|
tenant_id=tenant_id,
|
|
dataset_id=dataset_id,
|
|
account_id=user["user_id"],
|
|
)
|
|
permissions.append(permission)
|
|
|
|
db.session.add_all(permissions)
|
|
db.session.commit()
|
|
except Exception as e:
|
|
db.session.rollback()
|
|
raise e
|
|
|
|
@classmethod
|
|
def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
|
|
if not user.is_dataset_editor:
|
|
raise NoPermissionError("User does not have permission to edit this dataset.")
|
|
|
|
if user.is_dataset_operator and dataset.permission != requested_permission:
|
|
raise NoPermissionError("Dataset operators cannot change the dataset permissions.")
|
|
|
|
if user.is_dataset_operator and requested_permission == "partial_members":
|
|
if not requested_partial_member_list:
|
|
raise ValueError("Partial member list is required when setting to partial members.")
|
|
|
|
local_member_list = cls.get_dataset_partial_member_list(dataset.id)
|
|
request_member_list = [user["user_id"] for user in requested_partial_member_list]
|
|
if set(local_member_list) != set(request_member_list):
|
|
raise ValueError("Dataset operators cannot change the dataset permissions.")
|
|
|
|
@classmethod
|
|
def clear_partial_member_list(cls, dataset_id):
|
|
try:
|
|
db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
|
|
db.session.commit()
|
|
except Exception as e:
|
|
db.session.rollback()
|
|
raise e
|