-LAN- 44a2eca449
refactor: Refactors workflow node execution handling (#18382)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-04-18 20:06:24 +08:00

120 lines
3.8 KiB
Python

from core.plugin.backwards_invocation.base import BaseBackwardsInvocation
from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.parameter_extractor.entities import (
ModelConfig as ParameterExtractorModelConfig,
)
from core.workflow.nodes.parameter_extractor.entities import (
ParameterConfig,
ParameterExtractorNodeData,
)
from core.workflow.nodes.question_classifier.entities import (
ClassConfig,
QuestionClassifierNodeData,
)
from core.workflow.nodes.question_classifier.entities import (
ModelConfig as QuestionClassifierModelConfig,
)
from services.workflow_service import WorkflowService
class PluginNodeBackwardsInvocation(BaseBackwardsInvocation):
@classmethod
def invoke_parameter_extractor(
cls,
tenant_id: str,
user_id: str,
parameters: list[ParameterConfig],
model_config: ParameterExtractorModelConfig,
instruction: str,
query: str,
) -> dict:
"""
Invoke parameter extractor node.
:param tenant_id: str
:param user_id: str
:param parameters: list[ParameterConfig]
:param model_config: ModelConfig
:param instruction: str
:param query: str
:return: dict
"""
# FIXME(-LAN-): Avoid import service into core
workflow_service = WorkflowService()
node_id = "1919810"
node_data = ParameterExtractorNodeData(
title="parameter_extractor",
desc="parameter_extractor",
parameters=parameters,
reasoning_mode="function_call",
query=[node_id, "query"],
model=model_config,
instruction=instruction, # instruct with variables are not supported
)
node_data_dict = node_data.model_dump()
node_data_dict["type"] = NodeType.PARAMETER_EXTRACTOR.value
execution = workflow_service.run_free_workflow_node(
node_data_dict,
tenant_id=tenant_id,
user_id=user_id,
node_id=node_id,
user_inputs={
f"{node_id}.query": query,
},
)
return {
"inputs": execution.inputs_dict,
"outputs": execution.outputs_dict,
"process_data": execution.process_data_dict,
}
@classmethod
def invoke_question_classifier(
cls,
tenant_id: str,
user_id: str,
model_config: QuestionClassifierModelConfig,
classes: list[ClassConfig],
instruction: str,
query: str,
) -> dict:
"""
Invoke question classifier node.
:param tenant_id: str
:param user_id: str
:param model_config: ModelConfig
:param classes: list[ClassConfig]
:param instruction: str
:param query: str
:return: dict
"""
# FIXME(-LAN-): Avoid import service into core
workflow_service = WorkflowService()
node_id = "1919810"
node_data = QuestionClassifierNodeData(
title="question_classifier",
desc="question_classifier",
query_variable_selector=[node_id, "query"],
model=model_config,
classes=classes,
instruction=instruction, # instruct with variables are not supported
)
node_data_dict = node_data.model_dump()
execution = workflow_service.run_free_workflow_node(
node_data_dict,
tenant_id=tenant_id,
user_id=user_id,
node_id=node_id,
user_inputs={
f"{node_id}.query": query,
},
)
return {
"inputs": execution.inputs_dict,
"outputs": execution.outputs_dict,
"process_data": execution.process_data_dict,
}