mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-05-17 22:16:55 +08:00
205 lines
6.7 KiB
Python
205 lines
6.7 KiB
Python
import os
|
|
from collections.abc import Generator
|
|
|
|
import pytest
|
|
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
|
from core.model_runtime.entities.message_entities import (
|
|
AssistantPromptMessage,
|
|
PromptMessageTool,
|
|
SystemPromptMessage,
|
|
UserPromptMessage,
|
|
)
|
|
from core.model_runtime.entities.model_entities import AIModelEntity
|
|
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
|
from core.model_runtime.model_providers.x.llm.llm import XAILargeLanguageModel
|
|
|
|
"""FOR MOCK FIXTURES, DO NOT REMOVE"""
|
|
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
|
|
|
|
|
|
def test_predefined_models():
|
|
model = XAILargeLanguageModel()
|
|
model_schemas = model.predefined_models()
|
|
|
|
assert len(model_schemas) >= 1
|
|
assert isinstance(model_schemas[0], AIModelEntity)
|
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
|
def test_validate_credentials_for_chat_model(setup_openai_mock):
|
|
model = XAILargeLanguageModel()
|
|
|
|
with pytest.raises(CredentialsValidateFailedError):
|
|
# model name to gpt-3.5-turbo because of mocking
|
|
model.validate_credentials(
|
|
model="gpt-3.5-turbo",
|
|
credentials={"api_key": "invalid_key", "endpoint_url": os.environ.get("XAI_API_BASE"), "mode": "chat"},
|
|
)
|
|
|
|
model.validate_credentials(
|
|
model="grok-beta",
|
|
credentials={
|
|
"api_key": os.environ.get("XAI_API_KEY"),
|
|
"endpoint_url": os.environ.get("XAI_API_BASE"),
|
|
"mode": "chat",
|
|
},
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
|
def test_invoke_chat_model(setup_openai_mock):
|
|
model = XAILargeLanguageModel()
|
|
|
|
result = model.invoke(
|
|
model="grok-beta",
|
|
credentials={
|
|
"api_key": os.environ.get("XAI_API_KEY"),
|
|
"endpoint_url": os.environ.get("XAI_API_BASE"),
|
|
"mode": "chat",
|
|
},
|
|
prompt_messages=[
|
|
SystemPromptMessage(
|
|
content="You are a helpful AI assistant.",
|
|
),
|
|
UserPromptMessage(content="Hello World!"),
|
|
],
|
|
model_parameters={
|
|
"temperature": 0.0,
|
|
"top_p": 1.0,
|
|
"presence_penalty": 0.0,
|
|
"frequency_penalty": 0.0,
|
|
"max_tokens": 10,
|
|
},
|
|
stop=["How"],
|
|
stream=False,
|
|
user="foo",
|
|
)
|
|
|
|
assert isinstance(result, LLMResult)
|
|
assert len(result.message.content) > 0
|
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
|
def test_invoke_chat_model_with_tools(setup_openai_mock):
|
|
model = XAILargeLanguageModel()
|
|
|
|
result = model.invoke(
|
|
model="grok-beta",
|
|
credentials={
|
|
"api_key": os.environ.get("XAI_API_KEY"),
|
|
"endpoint_url": os.environ.get("XAI_API_BASE"),
|
|
"mode": "chat",
|
|
},
|
|
prompt_messages=[
|
|
SystemPromptMessage(
|
|
content="You are a helpful AI assistant.",
|
|
),
|
|
UserPromptMessage(
|
|
content="what's the weather today in London?",
|
|
),
|
|
],
|
|
model_parameters={"temperature": 0.0, "max_tokens": 100},
|
|
tools=[
|
|
PromptMessageTool(
|
|
name="get_weather",
|
|
description="Determine weather in my location",
|
|
parameters={
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
|
|
"unit": {"type": "string", "enum": ["c", "f"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
),
|
|
PromptMessageTool(
|
|
name="get_stock_price",
|
|
description="Get the current stock price",
|
|
parameters={
|
|
"type": "object",
|
|
"properties": {"symbol": {"type": "string", "description": "The stock symbol"}},
|
|
"required": ["symbol"],
|
|
},
|
|
),
|
|
],
|
|
stream=False,
|
|
user="foo",
|
|
)
|
|
|
|
assert isinstance(result, LLMResult)
|
|
assert isinstance(result.message, AssistantPromptMessage)
|
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
|
def test_invoke_stream_chat_model(setup_openai_mock):
|
|
model = XAILargeLanguageModel()
|
|
|
|
result = model.invoke(
|
|
model="grok-beta",
|
|
credentials={
|
|
"api_key": os.environ.get("XAI_API_KEY"),
|
|
"endpoint_url": os.environ.get("XAI_API_BASE"),
|
|
"mode": "chat",
|
|
},
|
|
prompt_messages=[
|
|
SystemPromptMessage(
|
|
content="You are a helpful AI assistant.",
|
|
),
|
|
UserPromptMessage(content="Hello World!"),
|
|
],
|
|
model_parameters={"temperature": 0.0, "max_tokens": 100},
|
|
stream=True,
|
|
user="foo",
|
|
)
|
|
|
|
assert isinstance(result, Generator)
|
|
|
|
for chunk in result:
|
|
assert isinstance(chunk, LLMResultChunk)
|
|
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
|
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
|
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
|
|
if chunk.delta.finish_reason is not None:
|
|
assert chunk.delta.usage is not None
|
|
assert chunk.delta.usage.completion_tokens > 0
|
|
|
|
|
|
def test_get_num_tokens():
|
|
model = XAILargeLanguageModel()
|
|
|
|
num_tokens = model.get_num_tokens(
|
|
model="grok-beta",
|
|
credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")},
|
|
prompt_messages=[UserPromptMessage(content="Hello World!")],
|
|
)
|
|
|
|
assert num_tokens == 10
|
|
|
|
num_tokens = model.get_num_tokens(
|
|
model="grok-beta",
|
|
credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")},
|
|
prompt_messages=[
|
|
SystemPromptMessage(
|
|
content="You are a helpful AI assistant.",
|
|
),
|
|
UserPromptMessage(content="Hello World!"),
|
|
],
|
|
tools=[
|
|
PromptMessageTool(
|
|
name="get_weather",
|
|
description="Determine weather in my location",
|
|
parameters={
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
|
|
"unit": {"type": "string", "enum": ["c", "f"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
),
|
|
],
|
|
)
|
|
|
|
assert num_tokens == 77
|