mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-05-25 15:47:49 +08:00
223 lines
7.8 KiB
Python
223 lines
7.8 KiB
Python
import json
|
|
import os
|
|
import time
|
|
import uuid
|
|
from collections.abc import Generator
|
|
from unittest.mock import MagicMock
|
|
|
|
import pytest
|
|
|
|
from core.app.entities.app_invoke_entities import InvokeFrom
|
|
from core.workflow.entities.variable_pool import VariablePool
|
|
from core.workflow.enums import SystemVariableKey
|
|
from core.workflow.graph_engine.entities.graph import Graph
|
|
from core.workflow.graph_engine.entities.graph_init_params import GraphInitParams
|
|
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
|
|
from core.workflow.nodes.event import RunCompletedEvent
|
|
from core.workflow.nodes.llm.node import LLMNode
|
|
from extensions.ext_database import db
|
|
from models.enums import UserFrom
|
|
from models.workflow import WorkflowNodeExecutionStatus, WorkflowType
|
|
from tests.integration_tests.workflow.nodes.__mock.model import get_mocked_fetch_model_config
|
|
|
|
"""FOR MOCK FIXTURES, DO NOT REMOVE"""
|
|
from tests.integration_tests.model_runtime.__mock.plugin_daemon import setup_model_mock
|
|
from tests.integration_tests.workflow.nodes.__mock.code_executor import setup_code_executor_mock
|
|
|
|
|
|
def init_llm_node(config: dict) -> LLMNode:
|
|
graph_config = {
|
|
"edges": [
|
|
{
|
|
"id": "start-source-next-target",
|
|
"source": "start",
|
|
"target": "llm",
|
|
},
|
|
],
|
|
"nodes": [{"data": {"type": "start"}, "id": "start"}, config],
|
|
}
|
|
|
|
graph = Graph.init(graph_config=graph_config)
|
|
|
|
init_params = GraphInitParams(
|
|
tenant_id="1",
|
|
app_id="1",
|
|
workflow_type=WorkflowType.WORKFLOW,
|
|
workflow_id="1",
|
|
graph_config=graph_config,
|
|
user_id="1",
|
|
user_from=UserFrom.ACCOUNT,
|
|
invoke_from=InvokeFrom.DEBUGGER,
|
|
call_depth=0,
|
|
)
|
|
|
|
# construct variable pool
|
|
variable_pool = VariablePool(
|
|
system_variables={
|
|
SystemVariableKey.QUERY: "what's the weather today?",
|
|
SystemVariableKey.FILES: [],
|
|
SystemVariableKey.CONVERSATION_ID: "abababa",
|
|
SystemVariableKey.USER_ID: "aaa",
|
|
},
|
|
user_inputs={},
|
|
environment_variables=[],
|
|
conversation_variables=[],
|
|
)
|
|
variable_pool.add(["abc", "output"], "sunny")
|
|
|
|
node = LLMNode(
|
|
id=str(uuid.uuid4()),
|
|
graph_init_params=init_params,
|
|
graph=graph,
|
|
graph_runtime_state=GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter()),
|
|
config=config,
|
|
)
|
|
|
|
return node
|
|
|
|
|
|
def test_execute_llm(setup_model_mock):
|
|
node = init_llm_node(
|
|
config={
|
|
"id": "llm",
|
|
"data": {
|
|
"title": "123",
|
|
"type": "llm",
|
|
"model": {
|
|
"provider": "langgenius/openai/openai",
|
|
"name": "gpt-3.5-turbo",
|
|
"mode": "chat",
|
|
"completion_params": {},
|
|
},
|
|
"prompt_template": [
|
|
{"role": "system", "text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}."},
|
|
{"role": "user", "text": "{{#sys.query#}}"},
|
|
],
|
|
"memory": None,
|
|
"context": {"enabled": False},
|
|
"vision": {"enabled": False},
|
|
},
|
|
},
|
|
)
|
|
|
|
credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
|
|
|
|
# Mock db.session.close()
|
|
db.session.close = MagicMock()
|
|
|
|
node._fetch_model_config = get_mocked_fetch_model_config(
|
|
provider="langgenius/openai/openai",
|
|
model="gpt-3.5-turbo",
|
|
mode="chat",
|
|
credentials=credentials,
|
|
)
|
|
|
|
# execute node
|
|
result = node._run()
|
|
assert isinstance(result, Generator)
|
|
|
|
for item in result:
|
|
if isinstance(item, RunCompletedEvent):
|
|
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
|
assert item.run_result.process_data is not None
|
|
assert item.run_result.outputs is not None
|
|
assert item.run_result.outputs.get("text") is not None
|
|
assert item.run_result.outputs.get("usage", {})["total_tokens"] > 0
|
|
|
|
|
|
@pytest.mark.parametrize("setup_code_executor_mock", [["none"]], indirect=True)
|
|
def test_execute_llm_with_jinja2(setup_code_executor_mock, setup_model_mock):
|
|
"""
|
|
Test execute LLM node with jinja2
|
|
"""
|
|
node = init_llm_node(
|
|
config={
|
|
"id": "llm",
|
|
"data": {
|
|
"title": "123",
|
|
"type": "llm",
|
|
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
|
|
"prompt_config": {
|
|
"jinja2_variables": [
|
|
{"variable": "sys_query", "value_selector": ["sys", "query"]},
|
|
{"variable": "output", "value_selector": ["abc", "output"]},
|
|
]
|
|
},
|
|
"prompt_template": [
|
|
{
|
|
"role": "system",
|
|
"text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}",
|
|
"jinja2_text": "you are a helpful assistant.\ntoday's weather is {{output}}.",
|
|
"edition_type": "jinja2",
|
|
},
|
|
{
|
|
"role": "user",
|
|
"text": "{{#sys.query#}}",
|
|
"jinja2_text": "{{sys_query}}",
|
|
"edition_type": "basic",
|
|
},
|
|
],
|
|
"memory": None,
|
|
"context": {"enabled": False},
|
|
"vision": {"enabled": False},
|
|
},
|
|
},
|
|
)
|
|
|
|
credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
|
|
|
|
# Mock db.session.close()
|
|
db.session.close = MagicMock()
|
|
|
|
node._fetch_model_config = get_mocked_fetch_model_config(
|
|
provider="langgenius/openai/openai",
|
|
model="gpt-3.5-turbo",
|
|
mode="chat",
|
|
credentials=credentials,
|
|
)
|
|
|
|
# execute node
|
|
result = node._run()
|
|
|
|
for item in result:
|
|
if isinstance(item, RunCompletedEvent):
|
|
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
|
assert item.run_result.process_data is not None
|
|
assert "sunny" in json.dumps(item.run_result.process_data)
|
|
assert "what's the weather today?" in json.dumps(item.run_result.process_data)
|
|
|
|
|
|
def test_extract_json():
|
|
node = init_llm_node(
|
|
config={
|
|
"id": "llm",
|
|
"data": {
|
|
"title": "123",
|
|
"type": "llm",
|
|
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
|
|
"prompt_config": {
|
|
"structured_output": {
|
|
"enabled": True,
|
|
"schema": {
|
|
"type": "object",
|
|
"properties": {"name": {"type": "string"}, "age": {"type": "number"}},
|
|
},
|
|
}
|
|
},
|
|
"prompt_template": [{"role": "user", "text": "{{#sys.query#}}"}],
|
|
"memory": None,
|
|
"context": {"enabled": False},
|
|
"vision": {"enabled": False},
|
|
},
|
|
},
|
|
)
|
|
llm_texts = [
|
|
'<think>\n\n</think>{"name": "test", "age": 123', # resoning model (deepseek-r1)
|
|
'{"name":"test","age":123}', # json schema model (gpt-4o)
|
|
'{\n "name": "test",\n "age": 123\n}', # small model (llama-3.2-1b)
|
|
'```json\n{"name": "test", "age": 123}\n```', # json markdown (deepseek-chat)
|
|
'{"name":"test",age:123}', # without quotes (qwen-2.5-0.5b)
|
|
]
|
|
result = {"name": "test", "age": 123}
|
|
assert all(node._parse_structured_output(item) == result for item in llm_texts)
|