dify/api/tasks/batch_create_segment_to_index_task.py
2025-03-16 11:16:28 +08:00

130 lines
4.9 KiB
Python

import datetime
import logging
import time
import uuid
import click
from celery import shared_task # type: ignore
from sqlalchemy import func, select
from sqlalchemy.orm import Session
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from libs import helper
from models.dataset import Dataset, Document, DocumentSegment
from services.vector_service import VectorService
@shared_task(queue="dataset")
def batch_create_segment_to_index_task(
job_id: str,
content: list,
dataset_id: str,
document_id: str,
tenant_id: str,
user_id: str,
):
"""
Async batch create segment to index
:param job_id:
:param content:
:param dataset_id:
:param document_id:
:param tenant_id:
:param user_id:
Usage: batch_create_segment_to_index_task.delay(job_id, content, dataset_id, document_id, tenant_id, user_id)
"""
logging.info(click.style("Start batch create segment jobId: {}".format(job_id), fg="green"))
start_at = time.perf_counter()
indexing_cache_key = "segment_batch_import_{}".format(job_id)
try:
with Session(db.engine) as session:
dataset = session.get(Dataset, dataset_id)
if not dataset:
raise ValueError("Dataset not exist.")
dataset_document = session.get(Document, document_id)
if not dataset_document:
raise ValueError("Document not exist.")
if (
not dataset_document.enabled
or dataset_document.archived
or dataset_document.indexing_status != "completed"
):
raise ValueError("Document is not available.")
document_segments = []
embedding_model = None
if dataset.indexing_technique == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
word_count_change = 0
segments_to_insert: list[str] = []
max_position_stmt = select(func.max(DocumentSegment.position)).where(
DocumentSegment.document_id == dataset_document.id
)
word_count_change = 0
if embedding_model:
tokens_list = embedding_model.get_text_embedding_num_tokens(
texts=[segment["content"] for segment in content]
)
else:
tokens_list = [0] * len(content)
for segment, tokens in zip(content, tokens_list):
content = segment["content"]
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content) # type: ignore
max_position = (
db.session.query(func.max(DocumentSegment.position))
.filter(DocumentSegment.document_id == dataset_document.id)
.scalar()
)
segment_document = DocumentSegment(
tenant_id=tenant_id,
dataset_id=dataset_id,
document_id=document_id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
created_by=user_id,
indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
status="completed",
completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
)
if dataset_document.doc_form == "qa_model":
segment_document.answer = segment["answer"]
segment_document.word_count += len(segment["answer"])
word_count_change += segment_document.word_count
db.session.add(segment_document)
document_segments.append(segment_document)
# update document word count
dataset_document.word_count += word_count_change
db.session.add(dataset_document)
# add index to db
VectorService.create_segments_vector(None, document_segments, dataset, dataset_document.doc_form)
db.session.commit()
redis_client.setex(indexing_cache_key, 600, "completed")
end_at = time.perf_counter()
logging.info(
click.style(
"Segment batch created job: {} latency: {}".format(job_id, end_at - start_at),
fg="green",
)
)
except Exception:
logging.exception("Segments batch created index failed")
redis_client.setex(indexing_cache_key, 600, "error")