takatost d069c668f8
Model Runtime (#1858)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
Co-authored-by: Garfield Dai <dai.hai@foxmail.com>
Co-authored-by: chenhe <guchenhe@gmail.com>
Co-authored-by: jyong <jyong@dify.ai>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: Yeuoly <admin@srmxy.cn>
2024-01-02 23:42:00 +08:00

117 lines
3.5 KiB
Python

import os
from typing import Generator
import pytest
from core.model_runtime.entities.message_entities import SystemPromptMessage, UserPromptMessage, AssistantPromptMessage
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, \
LLMResultChunkDelta
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.anthropic.llm.llm import AnthropicLargeLanguageModel
from tests.integration_tests.model_runtime.__mock.anthropic import setup_anthropic_mock
@pytest.mark.parametrize('setup_anthropic_mock', [['none']], indirect=True)
def test_validate_credentials(setup_anthropic_mock):
model = AnthropicLargeLanguageModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model='claude-instant-1',
credentials={
'anthropic_api_key': 'invalid_key'
}
)
model.validate_credentials(
model='claude-instant-1',
credentials={
'anthropic_api_key': os.environ.get('ANTHROPIC_API_KEY')
}
)
@pytest.mark.parametrize('setup_anthropic_mock', [['none']], indirect=True)
def test_invoke_model(setup_anthropic_mock):
model = AnthropicLargeLanguageModel()
response = model.invoke(
model='claude-instant-1',
credentials={
'anthropic_api_key': os.environ.get('ANTHROPIC_API_KEY'),
'anthropic_api_url': os.environ.get('ANTHROPIC_API_URL')
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Hello World!'
)
],
model_parameters={
'temperature': 0.0,
'top_p': 1.0,
'max_tokens_to_sample': 10
},
stop=['How'],
stream=False,
user="abc-123"
)
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
@pytest.mark.parametrize('setup_anthropic_mock', [['none']], indirect=True)
def test_invoke_stream_model(setup_anthropic_mock):
model = AnthropicLargeLanguageModel()
response = model.invoke(
model='claude-instant-1',
credentials={
'anthropic_api_key': os.environ.get('ANTHROPIC_API_KEY')
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Hello World!'
)
],
model_parameters={
'temperature': 0.0,
'max_tokens_to_sample': 100
},
stream=True,
user="abc-123"
)
assert isinstance(response, Generator)
for chunk in response:
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
def test_get_num_tokens():
model = AnthropicLargeLanguageModel()
num_tokens = model.get_num_tokens(
model='claude-instant-1',
credentials={
'anthropic_api_key': os.environ.get('ANTHROPIC_API_KEY')
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Hello World!'
)
]
)
assert num_tokens == 18