Yeuoly 403e2d58b9
Introduce Plugins (#13836)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
Signed-off-by: -LAN- <laipz8200@outlook.com>
Signed-off-by: xhe <xw897002528@gmail.com>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: takatost <takatost@gmail.com>
Co-authored-by: kurokobo <kuro664@gmail.com>
Co-authored-by: Novice Lee <novicelee@NoviPro.local>
Co-authored-by: zxhlyh <jasonapring2015@outlook.com>
Co-authored-by: AkaraChen <akarachen@outlook.com>
Co-authored-by: Yi <yxiaoisme@gmail.com>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: JzoNg <jzongcode@gmail.com>
Co-authored-by: twwu <twwu@dify.ai>
Co-authored-by: Hiroshi Fujita <fujita-h@users.noreply.github.com>
Co-authored-by: AkaraChen <85140972+AkaraChen@users.noreply.github.com>
Co-authored-by: NFish <douxc512@gmail.com>
Co-authored-by: Wu Tianwei <30284043+WTW0313@users.noreply.github.com>
Co-authored-by: 非法操作 <hjlarry@163.com>
Co-authored-by: Novice <857526207@qq.com>
Co-authored-by: Hiroki Nagai <82458324+nagaihiroki-git@users.noreply.github.com>
Co-authored-by: Gen Sato <52241300+halogen22@users.noreply.github.com>
Co-authored-by: eux <euxuuu@gmail.com>
Co-authored-by: huangzhuo1949 <167434202+huangzhuo1949@users.noreply.github.com>
Co-authored-by: huangzhuo <huangzhuo1@xiaomi.com>
Co-authored-by: lotsik <lotsik@mail.ru>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: nite-knite <nkCoding@gmail.com>
Co-authored-by: Jyong <76649700+JohnJyong@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: gakkiyomi <gakkiyomi@aliyun.com>
Co-authored-by: CN-P5 <heibai2006@gmail.com>
Co-authored-by: CN-P5 <heibai2006@qq.com>
Co-authored-by: Chuehnone <1897025+chuehnone@users.noreply.github.com>
Co-authored-by: yihong <zouzou0208@gmail.com>
Co-authored-by: Kevin9703 <51311316+Kevin9703@users.noreply.github.com>
Co-authored-by: -LAN- <laipz8200@outlook.com>
Co-authored-by: Boris Feld <lothiraldan@gmail.com>
Co-authored-by: mbo <himabo@gmail.com>
Co-authored-by: mabo <mabo@aeyes.ai>
Co-authored-by: Warren Chen <warren.chen830@gmail.com>
Co-authored-by: JzoNgKVO <27049666+JzoNgKVO@users.noreply.github.com>
Co-authored-by: jiandanfeng <chenjh3@wangsu.com>
Co-authored-by: zhu-an <70234959+xhdd123321@users.noreply.github.com>
Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com>
Co-authored-by: 海狸大師 <86974027+yenslife@users.noreply.github.com>
Co-authored-by: Xu Song <xusong.vip@gmail.com>
Co-authored-by: rayshaw001 <396301947@163.com>
Co-authored-by: Ding Jiatong <dingjiatong@gmail.com>
Co-authored-by: Bowen Liang <liangbowen@gf.com.cn>
Co-authored-by: JasonVV <jasonwangiii@outlook.com>
Co-authored-by: le0zh <newlight@qq.com>
Co-authored-by: zhuxinliang <zhuxinliang@didiglobal.com>
Co-authored-by: k-zaku <zaku99@outlook.jp>
Co-authored-by: luckylhb90 <luckylhb90@gmail.com>
Co-authored-by: hobo.l <hobo.l@binance.com>
Co-authored-by: jiangbo721 <365065261@qq.com>
Co-authored-by: 刘江波 <jiangbo721@163.com>
Co-authored-by: Shun Miyazawa <34241526+miya@users.noreply.github.com>
Co-authored-by: EricPan <30651140+Egfly@users.noreply.github.com>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: sino <sino2322@gmail.com>
Co-authored-by: Jhvcc <37662342+Jhvcc@users.noreply.github.com>
Co-authored-by: lowell <lowell.hu@zkteco.in>
Co-authored-by: Boris Polonsky <BorisPolonsky@users.noreply.github.com>
Co-authored-by: Ademílson Tonato <ademilsonft@outlook.com>
Co-authored-by: Ademílson Tonato <ademilson.tonato@refurbed.com>
Co-authored-by: IWAI, Masaharu <iwaim.sub@gmail.com>
Co-authored-by: Yueh-Po Peng (Yabi) <94939112+y10ab1@users.noreply.github.com>
Co-authored-by: Jason <ggbbddjm@gmail.com>
Co-authored-by: Xin Zhang <sjhpzx@gmail.com>
Co-authored-by: yjc980121 <3898524+yjc980121@users.noreply.github.com>
Co-authored-by: heyszt <36215648+hieheihei@users.noreply.github.com>
Co-authored-by: Abdullah AlOsaimi <osaimiacc@gmail.com>
Co-authored-by: Abdullah AlOsaimi <189027247+osaimi@users.noreply.github.com>
Co-authored-by: Yingchun Lai <laiyingchun@apache.org>
Co-authored-by: Hash Brown <hi@xzd.me>
Co-authored-by: zuodongxu <192560071+zuodongxu@users.noreply.github.com>
Co-authored-by: Masashi Tomooka <tmokmss@users.noreply.github.com>
Co-authored-by: aplio <ryo.091219@gmail.com>
Co-authored-by: Obada Khalili <54270856+obadakhalili@users.noreply.github.com>
Co-authored-by: Nam Vu <zuzoovn@gmail.com>
Co-authored-by: Kei YAMAZAKI <1715090+kei-yamazaki@users.noreply.github.com>
Co-authored-by: TechnoHouse <13776377+deephbz@users.noreply.github.com>
Co-authored-by: Riddhimaan-Senapati <114703025+Riddhimaan-Senapati@users.noreply.github.com>
Co-authored-by: MaFee921 <31881301+2284730142@users.noreply.github.com>
Co-authored-by: te-chan <t-nakanome@sakura-is.co.jp>
Co-authored-by: HQidea <HQidea@users.noreply.github.com>
Co-authored-by: Joshbly <36315710+Joshbly@users.noreply.github.com>
Co-authored-by: xhe <xw897002528@gmail.com>
Co-authored-by: weiwenyan-dev <154779315+weiwenyan-dev@users.noreply.github.com>
Co-authored-by: ex_wenyan.wei <ex_wenyan.wei@tcl.com>
Co-authored-by: engchina <12236799+engchina@users.noreply.github.com>
Co-authored-by: engchina <atjapan2015@gmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: 呆萌闷油瓶 <253605712@qq.com>
Co-authored-by: Kemal <kemalmeler@outlook.com>
Co-authored-by: Lazy_Frog <4590648+lazyFrogLOL@users.noreply.github.com>
Co-authored-by: Yi Xiao <54782454+YIXIAO0@users.noreply.github.com>
Co-authored-by: Steven sun <98230804+Tuyohai@users.noreply.github.com>
Co-authored-by: steven <sunzwj@digitalchina.com>
Co-authored-by: Kalo Chin <91766386+fdb02983rhy@users.noreply.github.com>
Co-authored-by: Katy Tao <34019945+KatyTao@users.noreply.github.com>
Co-authored-by: depy <42985524+h4ckdepy@users.noreply.github.com>
Co-authored-by: 胡春东 <gycm520@gmail.com>
Co-authored-by: Junjie.M <118170653@qq.com>
Co-authored-by: MuYu <mr.muzea@gmail.com>
Co-authored-by: Naoki Takashima <39912547+takatea@users.noreply.github.com>
Co-authored-by: Summer-Gu <37869445+gubinjie@users.noreply.github.com>
Co-authored-by: Fei He <droxer.he@gmail.com>
Co-authored-by: ybalbert001 <120714773+ybalbert001@users.noreply.github.com>
Co-authored-by: Yuanbo Li <ybalbert@amazon.com>
Co-authored-by: douxc <7553076+douxc@users.noreply.github.com>
Co-authored-by: liuzhenghua <1090179900@qq.com>
Co-authored-by: Wu Jiayang <62842862+Wu-Jiayang@users.noreply.github.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: kimjion <45935338+kimjion@users.noreply.github.com>
Co-authored-by: AugNSo <song.tiankai@icloud.com>
Co-authored-by: llinvokerl <38915183+llinvokerl@users.noreply.github.com>
Co-authored-by: liusurong.lsr <liusurong.lsr@alibaba-inc.com>
Co-authored-by: Vasu Negi <vasu-negi@users.noreply.github.com>
Co-authored-by: Hundredwz <1808096180@qq.com>
Co-authored-by: Xiyuan Chen <52963600+GareArc@users.noreply.github.com>
2025-02-17 17:05:13 +08:00

322 lines
10 KiB
Python

import tempfile
from binascii import hexlify, unhexlify
from collections.abc import Generator
from core.model_manager import ModelManager
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
from core.model_runtime.entities.message_entities import (
PromptMessage,
SystemPromptMessage,
UserPromptMessage,
)
from core.plugin.backwards_invocation.base import BaseBackwardsInvocation
from core.plugin.entities.request import (
RequestInvokeLLM,
RequestInvokeModeration,
RequestInvokeRerank,
RequestInvokeSpeech2Text,
RequestInvokeSummary,
RequestInvokeTextEmbedding,
RequestInvokeTTS,
)
from core.tools.entities.tool_entities import ToolProviderType
from core.tools.utils.model_invocation_utils import ModelInvocationUtils
from core.workflow.nodes.llm.node import LLMNode
from models.account import Tenant
class PluginModelBackwardsInvocation(BaseBackwardsInvocation):
@classmethod
def invoke_llm(
cls, user_id: str, tenant: Tenant, payload: RequestInvokeLLM
) -> Generator[LLMResultChunk, None, None] | LLMResult:
"""
invoke llm
"""
model_instance = ModelManager().get_model_instance(
tenant_id=tenant.id,
provider=payload.provider,
model_type=payload.model_type,
model=payload.model,
)
# invoke model
response = model_instance.invoke_llm(
prompt_messages=payload.prompt_messages,
model_parameters=payload.completion_params,
tools=payload.tools,
stop=payload.stop,
stream=payload.stream or True,
user=user_id,
)
if isinstance(response, Generator):
def handle() -> Generator[LLMResultChunk, None, None]:
for chunk in response:
if chunk.delta.usage:
LLMNode.deduct_llm_quota(
tenant_id=tenant.id, model_instance=model_instance, usage=chunk.delta.usage
)
yield chunk
return handle()
else:
if response.usage:
LLMNode.deduct_llm_quota(tenant_id=tenant.id, model_instance=model_instance, usage=response.usage)
return response
@classmethod
def invoke_text_embedding(cls, user_id: str, tenant: Tenant, payload: RequestInvokeTextEmbedding):
"""
invoke text embedding
"""
model_instance = ModelManager().get_model_instance(
tenant_id=tenant.id,
provider=payload.provider,
model_type=payload.model_type,
model=payload.model,
)
# invoke model
response = model_instance.invoke_text_embedding(
texts=payload.texts,
user=user_id,
)
return response
@classmethod
def invoke_rerank(cls, user_id: str, tenant: Tenant, payload: RequestInvokeRerank):
"""
invoke rerank
"""
model_instance = ModelManager().get_model_instance(
tenant_id=tenant.id,
provider=payload.provider,
model_type=payload.model_type,
model=payload.model,
)
# invoke model
response = model_instance.invoke_rerank(
query=payload.query,
docs=payload.docs,
score_threshold=payload.score_threshold,
top_n=payload.top_n,
user=user_id,
)
return response
@classmethod
def invoke_tts(cls, user_id: str, tenant: Tenant, payload: RequestInvokeTTS):
"""
invoke tts
"""
model_instance = ModelManager().get_model_instance(
tenant_id=tenant.id,
provider=payload.provider,
model_type=payload.model_type,
model=payload.model,
)
# invoke model
response = model_instance.invoke_tts(
content_text=payload.content_text,
tenant_id=tenant.id,
voice=payload.voice,
user=user_id,
)
def handle() -> Generator[dict, None, None]:
for chunk in response:
yield {"result": hexlify(chunk).decode("utf-8")}
return handle()
@classmethod
def invoke_speech2text(cls, user_id: str, tenant: Tenant, payload: RequestInvokeSpeech2Text):
"""
invoke speech2text
"""
model_instance = ModelManager().get_model_instance(
tenant_id=tenant.id,
provider=payload.provider,
model_type=payload.model_type,
model=payload.model,
)
# invoke model
with tempfile.NamedTemporaryFile(suffix=".mp3", mode="wb", delete=True) as temp:
temp.write(unhexlify(payload.file))
temp.flush()
temp.seek(0)
response = model_instance.invoke_speech2text(
file=temp,
user=user_id,
)
return {
"result": response,
}
@classmethod
def invoke_moderation(cls, user_id: str, tenant: Tenant, payload: RequestInvokeModeration):
"""
invoke moderation
"""
model_instance = ModelManager().get_model_instance(
tenant_id=tenant.id,
provider=payload.provider,
model_type=payload.model_type,
model=payload.model,
)
# invoke model
response = model_instance.invoke_moderation(
text=payload.text,
user=user_id,
)
return {
"result": response,
}
@classmethod
def get_system_model_max_tokens(cls, tenant_id: str) -> int:
"""
get system model max tokens
"""
return ModelInvocationUtils.get_max_llm_context_tokens(tenant_id=tenant_id)
@classmethod
def get_prompt_tokens(cls, tenant_id: str, prompt_messages: list[PromptMessage]) -> int:
"""
get prompt tokens
"""
return ModelInvocationUtils.calculate_tokens(tenant_id=tenant_id, prompt_messages=prompt_messages)
@classmethod
def invoke_system_model(
cls,
user_id: str,
tenant: Tenant,
prompt_messages: list[PromptMessage],
) -> LLMResult:
"""
invoke system model
"""
return ModelInvocationUtils.invoke(
user_id=user_id,
tenant_id=tenant.id,
tool_type=ToolProviderType.PLUGIN,
tool_name="plugin",
prompt_messages=prompt_messages,
)
@classmethod
def invoke_summary(cls, user_id: str, tenant: Tenant, payload: RequestInvokeSummary):
"""
invoke summary
"""
max_tokens = cls.get_system_model_max_tokens(tenant_id=tenant.id)
content = payload.text
SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
and you can quickly aimed at the main point of an webpage and reproduce it in your own words but
retain the original meaning and keep the key points.
however, the text you got is too long, what you got is possible a part of the text.
Please summarize the text you got.
Here is the extra instruction you need to follow:
<extra_instruction>
{payload.instruction}
</extra_instruction>
"""
if (
cls.get_prompt_tokens(
tenant_id=tenant.id,
prompt_messages=[UserPromptMessage(content=content)],
)
< max_tokens * 0.6
):
return content
def get_prompt_tokens(content: str) -> int:
return cls.get_prompt_tokens(
tenant_id=tenant.id,
prompt_messages=[
SystemPromptMessage(content=SUMMARY_PROMPT.replace("{payload.instruction}", payload.instruction)),
UserPromptMessage(content=content),
],
)
def summarize(content: str) -> str:
summary = cls.invoke_system_model(
user_id=user_id,
tenant=tenant,
prompt_messages=[
SystemPromptMessage(content=SUMMARY_PROMPT.replace("{payload.instruction}", payload.instruction)),
UserPromptMessage(content=content),
],
)
assert isinstance(summary.message.content, str)
return summary.message.content
lines = content.split("\n")
new_lines: list[str] = []
# split long line into multiple lines
for i in range(len(lines)):
line = lines[i]
if not line.strip():
continue
if len(line) < max_tokens * 0.5:
new_lines.append(line)
elif get_prompt_tokens(line) > max_tokens * 0.7:
while get_prompt_tokens(line) > max_tokens * 0.7:
new_lines.append(line[: int(max_tokens * 0.5)])
line = line[int(max_tokens * 0.5) :]
new_lines.append(line)
else:
new_lines.append(line)
# merge lines into messages with max tokens
messages: list[str] = []
for i in new_lines: # type: ignore
if len(messages) == 0:
messages.append(i) # type: ignore
else:
if len(messages[-1]) + len(i) < max_tokens * 0.5: # type: ignore
messages[-1] += i # type: ignore
if get_prompt_tokens(messages[-1] + i) > max_tokens * 0.7: # type: ignore
messages.append(i) # type: ignore
else:
messages[-1] += i # type: ignore
summaries = []
for i in range(len(messages)):
message = messages[i]
summary = summarize(message)
summaries.append(summary)
result = "\n".join(summaries)
if (
cls.get_prompt_tokens(
tenant_id=tenant.id,
prompt_messages=[UserPromptMessage(content=result)],
)
> max_tokens * 0.7
):
return cls.invoke_summary(
user_id=user_id,
tenant=tenant,
payload=RequestInvokeSummary(text=result, instruction=payload.instruction),
)
return result