Add examples/ Llama 4 Maverick Crawler

This commit is contained in:
Aparup Ganguly 2025-04-07 18:35:23 +05:30
parent 66e65d9422
commit 17ea3ff355
5 changed files with 373 additions and 0 deletions

View File

@ -0,0 +1,5 @@
# Firecrawl API Key
FIRECRAWL_API_KEY=your_firecrawl_api_key_here
# Together AI API Key
TOGETHER_API_KEY=your_together_api_key_here

View File

@ -0,0 +1,48 @@
# Dependencies
node_modules/
venv/
.env
.env.local
.env.*.local
# Build outputs
dist/
build/
*.pyc
__pycache__/
.cache/
.pytest_cache/
# IDE and editor files
.idea/
.vscode/
*.swp
*.swo
.DS_Store
Thumbs.db
# Logs
*.log
npm-debug.log*
yarn-debug.log*
yarn-error.log*
# Coverage and test reports
coverage/
.coverage
htmlcov/
# Temporary files
*.tmp
*.temp
.tmp/
temp/
# System files
.DS_Store
.DS_Store?
._*
.Spotlight-V100
.Trashes
ehthumbs.db
Thumbs.db

View File

@ -0,0 +1,78 @@
# Llama 4 Maverick Web Crawler
This project combines the power of Firecrawl for web crawling and Llama 4 Maverick (via Together AI) for intelligent content analysis. It helps you find specific information on websites by crawling pages and analyzing their content using advanced language models.
## Features
- Intelligent URL mapping and relevance ranking
- Content analysis using Llama 4 Maverick model
- Automatic extraction of relevant information
- Color-coded console output for better readability
## Prerequisites
- Python 3.8 or higher
- Firecrawl API key
- Together AI API key
## Installation
1. Clone this repository
2. Install the required packages:
```bash
pip install -r requirements.txt
```
3. Copy the `.env.example` file to `.env`:
```bash
cp .env.example .env
```
4. Add your API keys to the `.env` file:
```
FIRECRAWL_API_KEY=your_firecrawl_api_key_here
TOGETHER_API_KEY=your_together_api_key_here
```
## Usage
Run the script using:
```bash
python llama4-maverick-web-crawler.py
```
You will be prompted to:
1. Enter the website URL to crawl
2. Specify your objective/what information you're looking for
The script will then:
1. Map the website and find relevant pages
2. Analyze the content using Llama 4 Maverick
3. Extract and return the requested information in JSON format
## Example
```bash
Enter the website to crawl: https://example.com
Enter your objective: Find the company's contact information
```
## Error Handling
The script includes comprehensive error handling and will provide clear feedback if:
- API keys are missing
- Website is inaccessible
- No relevant information is found
- Any other errors occur during execution
## Dependencies
- firecrawl: For web crawling and content extraction
- together: For accessing the Llama 4 Maverick model
- python-dotenv: For environment variable management
## License
[Your chosen license]

View File

@ -0,0 +1,239 @@
import os
from firecrawl import FirecrawlApp
import json
from dotenv import load_dotenv
from together import Together
# ANSI color codes
class Colors:
CYAN = '\033[96m'
YELLOW = '\033[93m'
GREEN = '\033[92m'
RED = '\033[91m'
MAGENTA = '\033[95m'
BLUE = '\033[94m'
RESET = '\033[0m'
# Load environment variables
load_dotenv()
# Retrieve API keys from environment variables
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY")
together_api_key = os.getenv("TOGETHER_API_KEY")
# Initialize the FirecrawlApp and Together client
app = FirecrawlApp(api_key=firecrawl_api_key)
client = Together(api_key=together_api_key)
# Find the page that most likely contains the objective
def find_relevant_page_via_map(objective, url, app, client):
try:
print(f"{Colors.CYAN}Understood. The objective is: {objective}{Colors.RESET}")
print(f"{Colors.CYAN}Initiating search on the website: {url}{Colors.RESET}")
map_prompt = f"""
The map function generates a list of URLs from a website and it accepts a search parameter. Based on the objective of: {objective}, come up with a 1-2 word search parameter that will help us find the information we need. Only respond with 1-2 words nothing else.
"""
print(f"{Colors.YELLOW}Analyzing objective to determine optimal search parameter...{Colors.RESET}")
completion = client.chat.completions.create(
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
messages=[
{
"role": "user",
"content": map_prompt
}
]
)
map_search_parameter = completion.choices[0].message.content
print(f"{Colors.GREEN}Optimal search parameter identified: {map_search_parameter}{Colors.RESET}")
print(f"{Colors.YELLOW}Mapping website using the identified search parameter...{Colors.RESET}")
map_website = app.map_url(url, params={"search": map_search_parameter})
# Debug print to see the response structure
print(f"{Colors.MAGENTA}Debug - Map response structure: {json.dumps(map_website, indent=2)}{Colors.RESET}")
print(f"{Colors.GREEN}Website mapping completed successfully.{Colors.RESET}")
# Handle the response based on its structure
if isinstance(map_website, dict):
# Assuming the links are in a 'urls' or similar key
links = map_website.get('urls', []) or map_website.get('links', [])
elif isinstance(map_website, str):
try:
parsed = json.loads(map_website)
links = parsed.get('urls', []) or parsed.get('links', [])
except json.JSONDecodeError:
links = []
else:
links = map_website if isinstance(map_website, list) else []
if not links:
print(f"{Colors.RED}No links found in map response.{Colors.RESET}")
return None
rank_prompt = f"""
Given this list of URLs and the objective: {objective}
Analyze each URL and rank the top 3 most relevant ones that are most likely to contain the information we need.
IMPORTANT: You must ONLY return a JSON array with exactly 3 objects. Do not include ANY explanation text.
Do not include markdown formatting or ```json blocks. Return ONLY the raw JSON array.
Each object in the array must have exactly these fields:
- "url": the full URL
- "relevance_score": number between 0-100
- "reason": brief explanation of why this URL is relevant
URLs to analyze:
{json.dumps(links, indent=2)}
"""
print(f"{Colors.YELLOW}Ranking URLs by relevance to objective...{Colors.RESET}")
completion = client.chat.completions.create(
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
messages=[
{
"role": "user",
"content": rank_prompt
}
]
)
# Debug print to see LLM's raw response
print(f"{Colors.MAGENTA}Debug - LLM raw response:{Colors.RESET}")
print(f"{Colors.MAGENTA}{completion.choices[0].message.content}{Colors.RESET}")
try:
# Try to clean the response by stripping any potential markdown or extra whitespace
cleaned_response = completion.choices[0].message.content.strip()
if cleaned_response.startswith("```json"):
cleaned_response = cleaned_response.split("```json")[1]
if cleaned_response.endswith("```"):
cleaned_response = cleaned_response.rsplit("```", 1)[0]
cleaned_response = cleaned_response.strip()
ranked_results = json.loads(cleaned_response)
# Validate the structure of the results
if not isinstance(ranked_results, list):
raise ValueError("Response is not a list")
for result in ranked_results:
if not all(key in result for key in ["url", "relevance_score", "reason"]):
raise ValueError("Response items missing required fields")
links = [result["url"] for result in ranked_results]
# Print detailed ranking info
print(f"{Colors.CYAN}Top 3 ranked URLs:{Colors.RESET}")
for result in ranked_results:
print(f"{Colors.GREEN}URL: {result['url']}{Colors.RESET}")
print(f"{Colors.YELLOW}Relevance Score: {result['relevance_score']}{Colors.RESET}")
print(f"{Colors.BLUE}Reason: {result['reason']}{Colors.RESET}")
print("---")
if not links:
print(f"{Colors.RED}No relevant links identified.{Colors.RESET}")
return None
except (json.JSONDecodeError, KeyError) as e:
print(f"{Colors.RED}Error parsing ranked results: {str(e)}{Colors.RESET}")
return None
print(f"{Colors.GREEN}Located {len(links)} relevant links.{Colors.RESET}")
return links
except Exception as e:
print(f"{Colors.RED}Error encountered during relevant page identification: {str(e)}{Colors.RESET}")
return None
# Scrape the top 3 pages and see if the objective is met, if so return in json format else return None
def find_objective_in_top_pages(map_website, objective, app, client):
try:
# Get top 3 links from the map result
if not map_website:
print(f"{Colors.RED}No links found to analyze.{Colors.RESET}")
return None
top_links = map_website[:3]
print(f"{Colors.CYAN}Proceeding to analyze top {len(top_links)} links: {top_links}{Colors.RESET}")
for link in top_links:
print(f"{Colors.YELLOW}Initiating scrape of page: {link}{Colors.RESET}")
scrape_result = app.scrape_url(link, params={'formats': ['markdown']})
print(f"{Colors.GREEN}Page scraping completed successfully.{Colors.RESET}")
check_prompt = f"""
Given the following scraped content and objective, determine if the objective is met.
IMPORTANT: You must ONLY return one of two possible responses:
1. If objective is NOT met, respond with exactly: Objective not met
2. If objective IS met, respond with ONLY a JSON object containing the relevant information.
Do not include ANY explanation text, markdown formatting, or ```json blocks.
Return ONLY the raw JSON object.
Objective: {objective}
Scraped content: {scrape_result['markdown']}
"""
completion = client.chat.completions.create(
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
messages=[{"role": "user", "content": check_prompt}]
)
result = completion.choices[0].message.content.strip()
# Clean up the response if it contains markdown formatting
if result.startswith("```json"):
result = result.split("```json")[1]
if result.endswith("```"):
result = result.rsplit("```", 1)[0]
result = result.strip()
if result == "Objective not met":
print(f"{Colors.YELLOW}Objective not met on this page. Proceeding to next link...{Colors.RESET}")
continue
try:
json_result = json.loads(result)
print(f"{Colors.GREEN}Objective fulfilled. Relevant information found.{Colors.RESET}")
return json_result
except json.JSONDecodeError as e:
print(f"{Colors.RED}Error parsing JSON response: {str(e)}{Colors.RESET}")
print(f"{Colors.MAGENTA}Raw response: {result}{Colors.RESET}")
continue
print(f"{Colors.RED}All available pages analyzed. Objective not fulfilled in examined content.{Colors.RESET}")
return None
except Exception as e:
print(f"{Colors.RED}Error encountered during page analysis: {str(e)}{Colors.RESET}")
return None
# Main function to execute the process
def main():
# Get user input
url = input(f"{Colors.BLUE}Enter the website to crawl : {Colors.RESET}")
objective = input(f"{Colors.BLUE}Enter your objective: {Colors.RESET}")
print(f"{Colors.YELLOW}Initiating web crawling process...{Colors.RESET}")
# Find the relevant page
map_website = find_relevant_page_via_map(objective, url, app, client)
if map_website:
print(f"{Colors.GREEN}Relevant pages identified. Proceeding with detailed analysis using Llama 4 Maverick...{Colors.RESET}")
# Find objective in top pages
result = find_objective_in_top_pages(map_website, objective, app, client)
if result:
print(f"{Colors.GREEN}Objective successfully fulfilled. Extracted information :{Colors.RESET}")
print(f"{Colors.MAGENTA}{json.dumps(result, indent=2)}{Colors.RESET}")
else:
print(f"{Colors.RED}Unable to fulfill the objective with the available content.{Colors.RESET}")
else:
print(f"{Colors.RED}No relevant pages identified. Consider refining the search parameters or trying a different website.{Colors.RESET}")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,3 @@
firecrawl>=0.1.0
together>=0.2.0
python-dotenv>=0.19.0