Delete qwen 3

This commit is contained in:
Eric Ciarla 2025-05-01 16:54:12 -04:00
parent a0ed76d53d
commit 510171cabe
3 changed files with 0 additions and 222 deletions

View File

@ -1,5 +0,0 @@
# Firecrawl API key
FIRECRAWL_API_KEY=your_firecrawl_api_key_here
# OpenRouter API key
OPENROUTER_API_KEY=your_openrouter_api_key_here

View File

@ -1,75 +0,0 @@
# Qwen3 Web Crawler Example
This example demonstrates how to use the Firecrawl API with the Qwen3 30B A3B model via OpenRouter to crawl websites and extract information based on specific objectives.
## Features
- Maps a website to find relevant pages based on an objective
- Uses the Qwen3 30B A3B model from OpenRouter for intelligent search parameter generation
- Scrapes and analyzes top pages to extract relevant information
- Returns structured JSON data when the objective is met
## Prerequisites
- Python 3.7+
- Firecrawl API key
- OpenRouter API key
## Setup
1. Clone the repository
2. Install the required dependencies:
```
pip install firecrawl openai python-dotenv
```
3. Create a `.env` file based on the `.env.example` template and add your API keys:
```
FIRECRAWL_API_KEY=your_firecrawl_api_key_here
OPENROUTER_API_KEY=your_openrouter_api_key_here
```
## Usage
Run the script:
```
python qwen3_web_crawler.py
```
You will be prompted to:
1. Enter the website URL to crawl
2. Enter your objective (what information you're looking for)
The script will:
1. Analyze your objective to determine the optimal search parameter
2. Map the website to find relevant pages
3. Scrape and analyze the top pages
4. Extract and return the relevant information in JSON format if the objective is met
## Example
Input:
- Website: https://firecrawl.dev
- Objective: Find the pricing information for the API service
Output:
```json
{
"basic_plan": "$49/month",
"pro_plan": "$99/month",
"enterprise_plan": "Custom pricing",
"free_trial": "7 days"
}
```
## How It Works
1. The script uses the Firecrawl API to map and scrape websites
2. It leverages the Qwen3 30B A3B model via OpenRouter to:
- Generate optimal search parameters based on the objective
- Analyze scraped content to determine if the objective is met
- Extract relevant information in a structured format
## License
This example is part of the Firecrawl project and is licensed under the same terms.

View File

@ -1,142 +0,0 @@
import os
from firecrawl import FirecrawlApp
import json
from dotenv import load_dotenv
from openai import OpenAI
class Colors:
CYAN = '\033[96m'
YELLOW = '\033[93m'
GREEN = '\033[92m'
RED = '\033[91m'
MAGENTA = '\033[95m'
BLUE = '\033[94m'
RESET = '\033[0m'
load_dotenv()
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY")
openrouter_api_key = os.getenv("OPENROUTER_API_KEY")
app = FirecrawlApp(api_key=firecrawl_api_key)
client = OpenAI(
api_key=openrouter_api_key,
base_url="https://openrouter.ai/api/v1"
)
def find_relevant_page_via_map(objective, url, app, client):
try:
print(f"{Colors.CYAN}Understood. The objective is: {objective}{Colors.RESET}")
print(f"{Colors.CYAN}Initiating search on the website: {url}{Colors.RESET}")
map_prompt = f"""
The map function generates a list of URLs from a website and it accepts a search parameter. Based on the objective of: {objective}, come up with a 1-2 word search parameter that will help us find the information we need. Only respond with 1-2 words nothing else.
"""
print(f"{Colors.YELLOW}Analyzing objective to determine optimal search parameter...{Colors.RESET}")
completion = client.chat.completions.create(
model="qwen/qwen3-30b-a3b:free",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": map_prompt
}
]
}
]
)
map_search_parameter = completion.choices[0].message.content
print(f"{Colors.GREEN}Optimal search parameter identified: {map_search_parameter}{Colors.RESET}")
print(f"{Colors.YELLOW}Mapping website using the identified search parameter...{Colors.RESET}")
map_website = app.map_url(url, params={"search": map_search_parameter})
print(f"{Colors.GREEN}Website mapping completed successfully.{Colors.RESET}")
print(f"{Colors.GREEN}Located {len(map_website)} relevant links.{Colors.RESET}")
return map_website
except Exception as e:
print(f"{Colors.RED}Error encountered during relevant page identification: {str(e)}{Colors.RESET}")
return None
def find_objective_in_top_pages(map_website, objective, app, client):
try:
top_links = map_website[:3] if isinstance(map_website, list) else []
print(f"{Colors.CYAN}Proceeding to analyze top {len(top_links)} links: {top_links}{Colors.RESET}")
for link in top_links:
print(f"{Colors.YELLOW}Initiating scrape of page: {link}{Colors.RESET}")
scrape_result = app.scrape_url(link, params={'formats': ['markdown']})
print(f"{Colors.GREEN}Page scraping completed successfully.{Colors.RESET}")
check_prompt = f"""
Given the following scraped content and objective, determine if the objective is met.
If it is, extract the relevant information in a simple and concise JSON format. Use only the necessary fields and avoid nested structures if possible.
If the objective is not met with confidence, respond with 'Objective not met'.
Objective: {objective}
Scraped content: {scrape_result['markdown']}
Remember:
1. Only return JSON if you are confident the objective is fully met.
2. Keep the JSON structure as simple and flat as possible.
3. Do not include any explanations or markdown formatting in your response.
"""
completion = client.chat.completions.create(
model="qwen/qwen3-30b-a3b:free",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": check_prompt
}
]
}
]
)
result = completion.choices[0].message.content
if result != "Objective not met":
print(f"{Colors.GREEN}Objective potentially fulfilled. Relevant information identified.{Colors.RESET}")
try:
return json.loads(result)
except json.JSONDecodeError:
print(f"{Colors.RED}Error in parsing response. Proceeding to next page...{Colors.RESET}")
else:
print(f"{Colors.YELLOW}Objective not met on this page. Proceeding to next link...{Colors.RESET}")
print(f"{Colors.RED}All available pages analyzed. Objective not fulfilled in examined content.{Colors.RESET}")
return None
except Exception as e:
print(f"{Colors.RED}Error encountered during page analysis: {str(e)}{Colors.RESET}")
return None
def main():
url = input(f"{Colors.BLUE}Enter the website to crawl: {Colors.RESET}")
objective = input(f"{Colors.BLUE}Enter your objective: {Colors.RESET}")
print(f"{Colors.YELLOW}Initiating web crawling process...{Colors.RESET}")
map_website = find_relevant_page_via_map(objective, url, app, client)
if map_website:
print(f"{Colors.GREEN}Relevant pages identified. Proceeding with detailed analysis...{Colors.RESET}")
result = find_objective_in_top_pages(map_website, objective, app, client)
if result:
print(f"{Colors.GREEN}Objective successfully fulfilled. Extracted information:{Colors.RESET}")
print(f"{Colors.MAGENTA}{json.dumps(result, indent=2)}{Colors.RESET}")
else:
print(f"{Colors.RED}Unable to fulfill the objective with the available content.{Colors.RESET}")
else:
print(f"{Colors.RED}No relevant pages identified. Consider refining the search parameters or trying a different website.{Colors.RESET}")
if __name__ == "__main__":
main()