mirror of
https://git.mirrors.martin98.com/https://github.com/mendableai/firecrawl
synced 2025-08-05 20:16:03 +08:00
wip
This commit is contained in:
parent
464b41a5d2
commit
807703d94c
@ -1,22 +1,326 @@
|
|||||||
import { Request, Response } from "express";
|
import { Request, Response } from "express";
|
||||||
import {
|
import {
|
||||||
Document,
|
// Document,
|
||||||
RequestWithAuth,
|
RequestWithAuth,
|
||||||
ExtractRequest,
|
ExtractRequest,
|
||||||
extractRequestSchema,
|
extractRequestSchema,
|
||||||
ExtractResponse,
|
ExtractResponse,
|
||||||
MapDocument,
|
MapDocument,
|
||||||
|
scrapeOptions,
|
||||||
} from "./types";
|
} from "./types";
|
||||||
|
import { Document } from "../../lib/entities";
|
||||||
|
import { StoredCrawl, crawlToCrawler } from "../../lib/crawl-redis";
|
||||||
|
import { fireEngineMap } from "../../search/fireEngine";
|
||||||
|
import Redis from "ioredis";
|
||||||
|
import { configDotenv } from "dotenv";
|
||||||
|
import { performRanking } from "../../lib/ranker";
|
||||||
|
import { checkAndUpdateURLForMap } from "../../lib/validateUrl";
|
||||||
|
import { isSameDomain } from "../../lib/validateUrl";
|
||||||
|
import { isSameSubdomain } from "../../lib/validateUrl";
|
||||||
|
import { removeDuplicateUrls } from "../../lib/validateUrl";
|
||||||
|
import { billTeam } from "../../services/billing/credit_billing";
|
||||||
|
import { logJob } from "../../services/logging/log_job";
|
||||||
|
import { logger } from "../../lib/logger";
|
||||||
|
import { getScrapeQueue } from "../../services/queue-service";
|
||||||
|
import { waitForJob } from "../../services/queue-jobs";
|
||||||
|
import { addScrapeJob } from "../../services/queue-jobs";
|
||||||
|
import { PlanType } from "../../types";
|
||||||
|
import { getJobPriority } from "../../lib/job-priority";
|
||||||
|
import { generateCompletions } from "../../lib/LLM-extraction";
|
||||||
|
|
||||||
|
configDotenv();
|
||||||
|
const redis = new Redis(process.env.REDIS_URL!);
|
||||||
|
|
||||||
|
const MAX_EXTRACT_LIMIT = 100;
|
||||||
|
const MAX_RANKING_LIMIT = 3;
|
||||||
|
|
||||||
export async function extractController(
|
export async function extractController(
|
||||||
req: RequestWithAuth<{}, ExtractResponse, ExtractRequest>,
|
req: RequestWithAuth<{}, ExtractResponse, ExtractRequest>,
|
||||||
res: Response<ExtractResponse>
|
res: Response<any> //ExtractResponse>
|
||||||
) {
|
) {
|
||||||
req.body = extractRequestSchema.parse(req.body);
|
req.body = extractRequestSchema.parse(req.body);
|
||||||
|
|
||||||
|
const id = crypto.randomUUID();
|
||||||
|
let links: string[] = req.body.urls;
|
||||||
|
|
||||||
|
const sc: StoredCrawl = {
|
||||||
|
originUrl: req.body.urls[0],
|
||||||
|
crawlerOptions: {
|
||||||
|
// ...crawlerOptions,
|
||||||
|
scrapeOptions: undefined,
|
||||||
|
},
|
||||||
|
scrapeOptions: scrapeOptions.parse({}),
|
||||||
|
internalOptions: {},
|
||||||
|
team_id: req.auth.team_id,
|
||||||
|
createdAt: Date.now(),
|
||||||
|
plan: req.auth.plan!,
|
||||||
|
};
|
||||||
|
|
||||||
|
const crawler = crawlToCrawler(id, sc);
|
||||||
|
|
||||||
|
let urlWithoutWww = req.body.urls[0].replace("www.", "");
|
||||||
|
|
||||||
|
let mapUrl = req.body.prompt
|
||||||
|
? `"${req.body.prompt}" site:${urlWithoutWww}`
|
||||||
|
: `site:${req.body.urls[0]}`;
|
||||||
|
|
||||||
|
const resultsPerPage = 100;
|
||||||
|
const maxPages = Math.ceil(MAX_EXTRACT_LIMIT / resultsPerPage);
|
||||||
|
|
||||||
|
const cacheKey = `fireEngineMap:${mapUrl}`;
|
||||||
|
const cachedResult = null;
|
||||||
|
|
||||||
|
let allResults: any[] = [];
|
||||||
|
let pagePromises: Promise<any>[] = [];
|
||||||
|
|
||||||
|
if (cachedResult) {
|
||||||
|
allResults = JSON.parse(cachedResult);
|
||||||
|
} else {
|
||||||
|
const fetchPage = async (page: number) => {
|
||||||
|
return fireEngineMap(mapUrl, {
|
||||||
|
numResults: resultsPerPage,
|
||||||
|
page: page,
|
||||||
|
});
|
||||||
|
};
|
||||||
|
|
||||||
|
pagePromises = Array.from({ length: maxPages }, (_, i) => fetchPage(i + 1));
|
||||||
|
allResults = await Promise.all(pagePromises);
|
||||||
|
|
||||||
|
await redis.set(cacheKey, JSON.stringify(allResults), "EX", 24 * 60 * 60); // Cache for 24 hours
|
||||||
|
}
|
||||||
|
|
||||||
|
console.log("allResults", allResults);
|
||||||
|
// Parallelize sitemap fetch with serper search
|
||||||
|
const [sitemap, ...searchResults] = await Promise.all([
|
||||||
|
req.body.ignoreSitemap ? null : crawler.tryGetSitemap(),
|
||||||
|
...(cachedResult ? [] : pagePromises),
|
||||||
|
]);
|
||||||
|
|
||||||
|
if (!cachedResult) {
|
||||||
|
allResults = searchResults;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (sitemap !== null) {
|
||||||
|
sitemap.forEach((x) => {
|
||||||
|
links.push(x.url);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
let mapResults = allResults
|
||||||
|
.flat()
|
||||||
|
.filter((result) => result !== null && result !== undefined);
|
||||||
|
|
||||||
|
const minumumCutoff = Math.min(MAX_EXTRACT_LIMIT, req.body.limit ?? MAX_EXTRACT_LIMIT);
|
||||||
|
if (mapResults.length > minumumCutoff) {
|
||||||
|
mapResults = mapResults.slice(0, minumumCutoff);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (mapResults.length > 0) {
|
||||||
|
if (req.body.prompt) {
|
||||||
|
// Ensure all map results are first, maintaining their order
|
||||||
|
links = [
|
||||||
|
mapResults[0].url,
|
||||||
|
...mapResults.slice(1).map((x) => x.url),
|
||||||
|
...links,
|
||||||
|
];
|
||||||
|
} else {
|
||||||
|
mapResults.map((x) => {
|
||||||
|
links.push(x.url);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// console.log("links", links);
|
||||||
|
let linksAndScores: { link: string; score: number }[] = [];
|
||||||
|
// Perform cosine similarity between the search query and the list of links
|
||||||
|
if (req.body.prompt) {
|
||||||
|
const searchQuery = req.body.prompt.toLowerCase();
|
||||||
|
linksAndScores = await performRanking(links, searchQuery);
|
||||||
|
}
|
||||||
|
|
||||||
|
console.log("linksAndScores", linksAndScores);
|
||||||
|
|
||||||
|
links = links
|
||||||
|
.map((x) => {
|
||||||
|
try {
|
||||||
|
return checkAndUpdateURLForMap(x).url.trim();
|
||||||
|
} catch (_) {
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
})
|
||||||
|
.filter((x) => x !== null) as string[];
|
||||||
|
|
||||||
|
// allows for subdomains to be included
|
||||||
|
links = links.filter((x) => isSameDomain(x, req.body.urls[0]));
|
||||||
|
|
||||||
|
// if includeSubdomains is false, filter out subdomains
|
||||||
|
if (!req.body.includeSubdomains) {
|
||||||
|
links = links.filter((x) => isSameSubdomain(x, req.body.urls[0]));
|
||||||
|
}
|
||||||
|
|
||||||
|
// remove duplicates that could be due to http/https or www
|
||||||
|
links = removeDuplicateUrls(links);
|
||||||
|
|
||||||
|
// get top N links
|
||||||
|
links = links.slice(0, MAX_RANKING_LIMIT);
|
||||||
|
|
||||||
|
// scrape the links
|
||||||
|
let earlyReturn = false;
|
||||||
|
let docs: Document[] = [];
|
||||||
|
|
||||||
|
for (const url of links) {
|
||||||
|
const origin = req.body.origin || "api";
|
||||||
|
const timeout = req.body.timeout;
|
||||||
|
const jobId = crypto.randomUUID();
|
||||||
|
|
||||||
|
const startTime = new Date().getTime();
|
||||||
|
const jobPriority = await getJobPriority({
|
||||||
|
plan: req.auth.plan as PlanType,
|
||||||
|
team_id: req.auth.team_id,
|
||||||
|
basePriority: 10,
|
||||||
|
});
|
||||||
|
|
||||||
|
await addScrapeJob(
|
||||||
|
{
|
||||||
|
url,
|
||||||
|
mode: "single_urls",
|
||||||
|
team_id: req.auth.team_id,
|
||||||
|
scrapeOptions: scrapeOptions.parse({}),
|
||||||
|
internalOptions: {},
|
||||||
|
plan: req.auth.plan!,
|
||||||
|
origin,
|
||||||
|
is_scrape: true,
|
||||||
|
},
|
||||||
|
{},
|
||||||
|
jobId,
|
||||||
|
jobPriority
|
||||||
|
);
|
||||||
|
|
||||||
|
const totalWait = 60000 // (req.body.waitFor ?? 0) + (req.body.actions ?? []).reduce((a,x) => (x.type === "wait" ? x.milliseconds ?? 0 : 0) + a, 0);
|
||||||
|
|
||||||
|
let doc: Document;
|
||||||
|
try {
|
||||||
|
doc = await waitForJob<Document>(jobId, timeout + totalWait); // TODO: better types for this
|
||||||
|
} catch (e) {
|
||||||
|
logger.error(`Error in scrapeController: ${e}`);
|
||||||
|
if (e instanceof Error && (e.message.startsWith("Job wait") || e.message === "timeout")) {
|
||||||
|
return res.status(408).json({
|
||||||
|
success: false,
|
||||||
|
error: "Request timed out",
|
||||||
|
});
|
||||||
|
} else {
|
||||||
|
return res.status(500).json({
|
||||||
|
success: false,
|
||||||
|
error: `(Internal server error) - ${(e && e.message) ? e.message : e}`,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
await getScrapeQueue().remove(jobId);
|
||||||
|
|
||||||
|
const endTime = new Date().getTime();
|
||||||
|
const timeTakenInSeconds = (endTime - startTime) / 1000;
|
||||||
|
// const numTokens =
|
||||||
|
// doc && doc.extract
|
||||||
|
// // ? numTokensFromString(doc.markdown, "gpt-3.5-turbo")
|
||||||
|
// ? 0 // TODO: fix
|
||||||
|
// : 0;
|
||||||
|
|
||||||
|
let creditsToBeBilled = 1; // Assuming 1 credit per document
|
||||||
|
if (earlyReturn) {
|
||||||
|
// Don't bill if we're early returning
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
docs.push(doc);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
console.log("docs", docs);
|
||||||
|
|
||||||
|
// reduce to 1 document
|
||||||
|
const completions = await generateCompletions(
|
||||||
|
docs, {
|
||||||
|
extractionSchema: req.body.schema,
|
||||||
|
extractionPrompt: req.body.prompt,
|
||||||
|
userPrompt: req.body.prompt,
|
||||||
|
mode: "markdown"
|
||||||
|
},
|
||||||
|
"markdown"
|
||||||
|
);
|
||||||
|
|
||||||
|
console.log("completions", completions.map(x => x.llm_extraction));
|
||||||
|
|
||||||
|
// if(req.body.extract && req.body.formats.includes("extract")) {
|
||||||
|
// creditsToBeBilled = 5;
|
||||||
|
// }
|
||||||
|
|
||||||
|
// billTeam(req.auth.team_id, req.acuc?.sub_id, creditsToBeBilled).catch(error => {
|
||||||
|
// logger.error(`Failed to bill team ${req.auth.team_id} for ${creditsToBeBilled} credits: ${error}`);
|
||||||
|
// // Optionally, you could notify an admin or add to a retry queue here
|
||||||
|
// });
|
||||||
|
|
||||||
|
// if (!req.body.formats.includes("rawHtml")) {
|
||||||
|
// if (doc && doc.rawHtml) {
|
||||||
|
// delete doc.rawHtml;
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
|
||||||
|
// logJob({
|
||||||
|
// job_id: jobId,
|
||||||
|
// success: true,
|
||||||
|
// message: "Scrape completed",
|
||||||
|
// num_docs: 1,
|
||||||
|
// docs: [doc],
|
||||||
|
// time_taken: timeTakenInSeconds,
|
||||||
|
// team_id: req.auth.team_id,
|
||||||
|
// mode: "scrape",
|
||||||
|
// url: req.body.url,
|
||||||
|
// scrapeOptions: req.body,
|
||||||
|
// origin: origin,
|
||||||
|
// num_tokens: numTokens,
|
||||||
|
// });
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// billTeam(teamId, subId, 1).catch((error) => {
|
||||||
|
// logger.error(
|
||||||
|
// `Failed to bill team ${teamId} for 1 credit: ${error}`
|
||||||
|
// );
|
||||||
|
// });
|
||||||
|
|
||||||
|
// const linksToReturn = links.slice(0, limit);
|
||||||
|
|
||||||
|
// logJob({
|
||||||
|
// job_id: id,
|
||||||
|
// success: links.length > 0,
|
||||||
|
// message: "Extract completed",
|
||||||
|
// num_docs: linksToReturn.length,
|
||||||
|
// docs: linksToReturn,
|
||||||
|
// time_taken: (new Date().getTime() - Date.now()) / 1000,
|
||||||
|
// team_id: teamId,
|
||||||
|
// mode: "extract",
|
||||||
|
// url: urls[0],
|
||||||
|
// crawlerOptions: {},
|
||||||
|
// scrapeOptions: {},
|
||||||
|
// origin: origin ?? "api",
|
||||||
|
// num_tokens: 0,
|
||||||
|
// });
|
||||||
|
|
||||||
|
// return {
|
||||||
|
|
||||||
|
// };
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// const response = {
|
||||||
|
// success: true as const,
|
||||||
|
// data: result.data,
|
||||||
|
// scrape_id: result.scrape_id
|
||||||
|
// };
|
||||||
|
|
||||||
return res.status(200).json({
|
return res.status(200).json({
|
||||||
success: true,
|
success: true,
|
||||||
data: {} as Document,
|
data: {}, // includeMetadata ? mapResults : linksToReturn,
|
||||||
scrape_id: undefined,
|
scrape_id: id, //origin?.includes("website") ? id : undefined,
|
||||||
});
|
});
|
||||||
}
|
}
|
@ -158,6 +158,9 @@ export const extractV1Options = z.object({
|
|||||||
urls: url.array(),
|
urls: url.array(),
|
||||||
prompt: z.string().optional(),
|
prompt: z.string().optional(),
|
||||||
schema: z.any().optional(),
|
schema: z.any().optional(),
|
||||||
|
limit: z.number().int().positive().finite().safe().optional(),
|
||||||
|
ignoreSitemap: z.boolean().default(false),
|
||||||
|
includeSubdomains: z.boolean().default(true),
|
||||||
origin: z.string().optional().default("api"),
|
origin: z.string().optional().default("api"),
|
||||||
timeout: z.number().int().positive().finite().safe().default(60000),
|
timeout: z.number().int().positive().finite().safe().default(60000),
|
||||||
}).strict(strictMessage)
|
}).strict(strictMessage)
|
||||||
|
69
apps/api/src/lib/ranker.ts
Normal file
69
apps/api/src/lib/ranker.ts
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
import axios from 'axios';
|
||||||
|
import { configDotenv } from 'dotenv';
|
||||||
|
import OpenAI from "openai";
|
||||||
|
|
||||||
|
configDotenv();
|
||||||
|
|
||||||
|
const openai = new OpenAI({
|
||||||
|
apiKey: process.env.OPENAI_API_KEY,
|
||||||
|
});
|
||||||
|
|
||||||
|
async function getEmbedding(text: string) {
|
||||||
|
const embedding = await openai.embeddings.create({
|
||||||
|
model: "text-embedding-ada-002",
|
||||||
|
input: text,
|
||||||
|
encoding_format: "float",
|
||||||
|
});
|
||||||
|
|
||||||
|
return embedding.data[0].embedding;
|
||||||
|
}
|
||||||
|
|
||||||
|
const cosineSimilarity = (vec1: number[], vec2: number[]): number => {
|
||||||
|
const dotProduct = vec1.reduce((sum, val, i) => sum + val * vec2[i], 0);
|
||||||
|
const magnitude1 = Math.sqrt(
|
||||||
|
vec1.reduce((sum, val) => sum + val * val, 0)
|
||||||
|
);
|
||||||
|
const magnitude2 = Math.sqrt(
|
||||||
|
vec2.reduce((sum, val) => sum + val * val, 0)
|
||||||
|
);
|
||||||
|
if (magnitude1 === 0 || magnitude2 === 0) return 0;
|
||||||
|
return dotProduct / (magnitude1 * magnitude2);
|
||||||
|
};
|
||||||
|
|
||||||
|
// Function to convert text to vector
|
||||||
|
const textToVector = (searchQuery: string, text: string): number[] => {
|
||||||
|
const words = searchQuery.toLowerCase().split(/\W+/);
|
||||||
|
return words.map((word) => {
|
||||||
|
const count = (text.toLowerCase().match(new RegExp(word, "g")) || [])
|
||||||
|
.length;
|
||||||
|
return count / text.length;
|
||||||
|
});
|
||||||
|
};
|
||||||
|
|
||||||
|
async function performRanking(links: string[], searchQuery: string) {
|
||||||
|
try {
|
||||||
|
// Generate embeddings for the search query
|
||||||
|
const queryEmbedding = await getEmbedding(searchQuery);
|
||||||
|
|
||||||
|
// Generate embeddings for each link and calculate similarity
|
||||||
|
const linksAndScores = await Promise.all(links.map(async (link) => {
|
||||||
|
const linkEmbedding = await getEmbedding(link);
|
||||||
|
|
||||||
|
console.log("linkEmbedding", linkEmbedding);
|
||||||
|
// const linkVector = textToVector(searchQuery, link);
|
||||||
|
const score = cosineSimilarity(queryEmbedding, linkEmbedding);
|
||||||
|
console.log("score", score);
|
||||||
|
return { link, score };
|
||||||
|
}));
|
||||||
|
|
||||||
|
// Sort links based on similarity scores
|
||||||
|
linksAndScores.sort((a, b) => b.score - a.score);
|
||||||
|
|
||||||
|
return linksAndScores;
|
||||||
|
} catch (error) {
|
||||||
|
console.error(`Error performing semantic search: ${error}`);
|
||||||
|
return [];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
export { performRanking };
|
Loading…
x
Reference in New Issue
Block a user