Update firecrawl.py

This commit is contained in:
Nicolas 2025-04-18 00:48:07 -07:00
parent 5e6e41ab17
commit d8792d2301

View File

@ -1608,47 +1608,45 @@ class FirecrawlApp:
def extract(
self,
urls: Optional[List[str]] = None,
params: Optional[ExtractParams] = None) -> ExtractResponse[Any]:
*,
prompt: Optional[str] = None,
schema_: Optional[Any] = None,
system_prompt: Optional[str] = None,
allow_external_links: Optional[bool] = False,
enable_web_search: Optional[bool] = False,
show_sources: Optional[bool] = False,
agent: Optional[Dict[str, Any]] = None) -> ExtractResponse[Any]:
"""
Extract structured information from URLs.
Args:
urls: URLs to extract from
params: See ExtractParams model:
Extraction Config:
* prompt - Custom extraction prompt
* schema - JSON schema/Pydantic model
* systemPrompt - System context
Behavior Options:
* allowExternalLinks - Follow external links
* enableWebSearch - Enable web search
* includeSubdomains - Include subdomains
* showSources - Include source URLs
Scraping Options:
* scrapeOptions - Page scraping config
urls (Optional[List[str]]): URLs to extract from
prompt (Optional[str]): Custom extraction prompt
schema_ (Optional[Any]): JSON schema/Pydantic model
system_prompt (Optional[str]): System context
allow_external_links (Optional[bool]): Follow external links
enable_web_search (Optional[bool]): Enable web search
show_sources (Optional[bool]): Include source URLs
agent (Optional[Dict[str, Any]]): Agent configuration
Returns:
ExtractResponse with:
* Structured data matching schema
* Source information if requested
* Success/error status
ExtractResponse[Any] with:
* success (bool): Whether request succeeded
* data (Optional[Any]): Extracted data matching schema
* error (Optional[str]): Error message if any
Raises:
ValueError: If prompt/schema missing or extraction fails
"""
headers = self._prepare_headers()
if not params or (not params.get('prompt') and not params.get('schema')):
if not prompt and not schema_:
raise ValueError("Either prompt or schema is required")
if not urls and not params.get('prompt'):
if not urls and not prompt:
raise ValueError("Either urls or prompt is required")
schema = params.get('schema')
schema = schema_
if schema:
if hasattr(schema, 'model_json_schema'):
# Convert Pydantic model to JSON schema
@ -1656,26 +1654,22 @@ class FirecrawlApp:
# Otherwise assume it's already a JSON schema dict
request_data = {
'urls': urls,
'allowExternalLinks': params.get('allow_external_links', params.get('allowExternalLinks', False)),
'enableWebSearch': params.get('enable_web_search', params.get('enableWebSearch', False)),
'showSources': params.get('show_sources', params.get('showSources', False)),
'urls': urls or [],
'allowExternalLinks': allow_external_links,
'enableWebSearch': enable_web_search,
'showSources': show_sources,
'schema': schema,
'origin': f'python-sdk@{get_version()}'
}
if not request_data['urls']:
request_data['urls'] = []
# Only add prompt and systemPrompt if they exist
if params.get('prompt'):
request_data['prompt'] = params['prompt']
if params.get('system_prompt'):
request_data['systemPrompt'] = params['system_prompt']
elif params.get('systemPrompt'): # Check legacy field name
request_data['systemPrompt'] = params['systemPrompt']
if prompt:
request_data['prompt'] = prompt
if system_prompt:
request_data['systemPrompt'] = system_prompt
if params.get('agent'):
request_data['agent'] = params['agent']
if agent:
request_data['agent'] = agent
try:
# Send the initial extract request
@ -1706,7 +1700,7 @@ class FirecrawlApp:
except:
raise Exception(f'Failed to parse Firecrawl response as JSON.')
if status_data['status'] == 'completed':
return status_data
return ExtractResponse(**status_data)
elif status_data['status'] in ['failed', 'cancelled']:
raise Exception(f'Extract job {status_data["status"]}. Error: {status_data["error"]}')
else:
@ -1720,7 +1714,7 @@ class FirecrawlApp:
except Exception as e:
raise ValueError(str(e), 500)
return {'success': False, 'error': "Internal server error."}
return ExtractResponse(success=False, error="Internal server error.")
def get_extract_status(self, job_id: str) -> ExtractResponse[Any]:
"""
@ -1740,7 +1734,7 @@ class FirecrawlApp:
response = self._get_request(f'{self.api_url}/v1/extract/{job_id}', headers)
if response.status_code == 200:
try:
return response.json()
return ExtractResponse(**response.json())
except:
raise Exception(f'Failed to parse Firecrawl response as JSON.')
else:
@ -1751,60 +1745,68 @@ class FirecrawlApp:
def async_extract(
self,
urls: List[str],
params: Optional[ExtractParams] = None,
*,
prompt: Optional[str] = None,
schema_: Optional[Any] = None,
system_prompt: Optional[str] = None,
allow_external_links: Optional[bool] = False,
enable_web_search: Optional[bool] = False,
show_sources: Optional[bool] = False,
agent: Optional[Dict[str, Any]] = None,
idempotency_key: Optional[str] = None) -> ExtractResponse[Any]:
"""
Initiate an asynchronous extract job.
Args:
urls (List[str]): URLs to extract information from
params (Optional[ExtractParams]): See ExtractParams model:
Extraction Config:
* prompt - Custom extraction prompt
* schema - JSON schema/Pydantic model
* systemPrompt - System context
Behavior Options:
* allowExternalLinks - Follow external links
* enableWebSearch - Enable web search
* includeSubdomains - Include subdomains
* showSources - Include source URLs
Scraping Options:
* scrapeOptions - Page scraping config
prompt (Optional[str]): Custom extraction prompt
schema_ (Optional[Any]): JSON schema/Pydantic model
system_prompt (Optional[str]): System context
allow_external_links (Optional[bool]): Follow external links
enable_web_search (Optional[bool]): Enable web search
show_sources (Optional[bool]): Include source URLs
agent (Optional[Dict[str, Any]]): Agent configuration
idempotency_key (Optional[str]): Unique key to prevent duplicate requests
Returns:
ExtractResponse containing:
* success (bool): Whether job started successfully
* id (str): Unique identifier for the job
* error (str, optional): Error message if start failed
ExtractResponse[Any] with:
* success (bool): Whether request succeeded
* data (Optional[Any]): Extracted data matching schema
* error (Optional[str]): Error message if any
Raises:
ValueError: If job initiation fails
ValueError: If job initiation fails
"""
headers = self._prepare_headers(idempotency_key)
schema = params.get('schema') if params else None
schema = schema_
if schema:
if hasattr(schema, 'model_json_schema'):
# Convert Pydantic model to JSON schema
schema = schema.model_json_schema()
# Otherwise assume it's already a JSON schema dict
jsonData = {'urls': urls, **(params or {})}
request_data = {
**jsonData,
'allowExternalLinks': params.get('allow_external_links', False) if params else False,
'urls': urls,
'allowExternalLinks': allow_external_links,
'enableWebSearch': enable_web_search,
'showSources': show_sources,
'schema': schema,
'origin': f'python-sdk@{version}'
}
if prompt:
request_data['prompt'] = prompt
if system_prompt:
request_data['systemPrompt'] = system_prompt
if agent:
request_data['agent'] = agent
try:
response = self._post_request(f'{self.api_url}/v1/extract', request_data, headers)
if response.status_code == 200:
try:
return response.json()
return ExtractResponse(**response.json())
except:
raise Exception(f'Failed to parse Firecrawl response as JSON.')
else:
@ -1815,41 +1817,36 @@ class FirecrawlApp:
def generate_llms_text(
self,
url: str,
params: Optional[Union[Dict[str, Any], GenerateLLMsTextParams]] = None) -> GenerateLLMsTextStatusResponse:
*,
max_urls: Optional[int] = None,
show_full_text: Optional[bool] = None,
experimental_stream: Optional[bool] = None) -> GenerateLLMsTextStatusResponse:
"""
Generate LLMs.txt for a given URL and poll until completion.
Args:
url: Target URL to generate LLMs.txt from
params: See GenerateLLMsTextParams model:
params: See GenerateLLMsTextParams model:
params: See GenerateLLMsTextParams model:
Generation Options:
* maxUrls - Maximum URLs to process (default: 10)
* showFullText - Include full text in output (default: False)
url (str): Target URL to generate LLMs.txt from
max_urls (Optional[int]): Maximum URLs to process (default: 10)
show_full_text (Optional[bool]): Include full text in output (default: False)
experimental_stream (Optional[bool]): Enable experimental streaming
Returns:
GenerateLLMsTextStatusResponse with:
* Generated LLMs.txt content
* Full version if requested
* Generation status
* Success/error information
GenerateLLMsTextStatusResponse with:
* Generated LLMs.txt content
* Full version if requested
* Generation status
* Success/error information
Raises:
Exception: If generation fails
Exception: If generation fails
"""
if params is None:
params = {}
params = GenerateLLMsTextParams(
maxUrls=max_urls,
showFullText=show_full_text,
__experimental_stream=experimental_stream
)
if isinstance(params, dict):
generation_params = GenerateLLMsTextParams(**params)
else:
generation_params = params
response = self.async_generate_llms_text(url, generation_params)
response = self.async_generate_llms_text(url, params)
if not response.get('success') or 'id' not in response:
return response
@ -1871,35 +1868,36 @@ class FirecrawlApp:
def async_generate_llms_text(
self,
url: str,
params: Optional[Union[Dict[str, Any], GenerateLLMsTextParams]] = None) -> GenerateLLMsTextResponse:
*,
max_urls: Optional[int] = None,
show_full_text: Optional[bool] = None,
experimental_stream: Optional[bool] = None) -> GenerateLLMsTextResponse:
"""
Initiate an asynchronous LLMs.txt generation operation.
Args:
url (str): The target URL to generate LLMs.txt from. Must be a valid HTTP/HTTPS URL.
params (Optional[Union[Dict[str, Any], GenerateLLMsTextParams]]): Generation configuration parameters:
* maxUrls (int, optional): Maximum number of URLs to process (default: 10)
* showFullText (bool, optional): Include full text in output (default: False)
url (str): The target URL to generate LLMs.txt from. Must be a valid HTTP/HTTPS URL.
max_urls (Optional[int]): Maximum URLs to process (default: 10)
show_full_text (Optional[bool]): Include full text in output (default: False)
experimental_stream (Optional[bool]): Enable experimental streaming
Returns:
GenerateLLMsTextResponse: A response containing:
- success (bool): Whether the generation initiation was successful
- id (str): The unique identifier for the generation job
- error (str, optional): Error message if initiation failed
GenerateLLMsTextResponse: A response containing:
* success (bool): Whether the generation initiation was successful
* id (str): The unique identifier for the generation job
* error (str, optional): Error message if initiation failed
Raises:
Exception: If the generation job initiation fails.
Exception: If the generation job initiation fails.
"""
if params is None:
params = {}
if isinstance(params, dict):
generation_params = GenerateLLMsTextParams(**params)
else:
generation_params = params
params = GenerateLLMsTextParams(
maxUrls=max_urls,
showFullText=show_full_text,
__experimental_stream=experimental_stream
)
headers = self._prepare_headers()
json_data = {'url': url, **generation_params.dict(exclude_none=True)}
json_data = {'url': url, **params.dict(exclude_none=True)}
json_data['origin'] = f"python-sdk@{version}"
try:
@ -1921,20 +1919,20 @@ class FirecrawlApp:
Check the status of a LLMs.txt generation operation.
Args:
id (str): The unique identifier of the LLMs.txt generation job to check status for.
id (str): The unique identifier of the LLMs.txt generation job to check status for.
Returns:
GenerateLLMsTextStatusResponse: A response containing:
* success (bool): Whether the generation was successful
* status (str): Status of generation ("processing", "completed", "failed")
* data (Dict[str, str], optional): Generated text with fields:
* llmstxt (str): Generated LLMs.txt content
* llmsfulltxt (str, optional): Full version if requested
* error (str, optional): Error message if generation failed
* expiresAt (str): When the generated data expires
GenerateLLMsTextStatusResponse: A response containing:
* success (bool): Whether the generation was successful
* status (str): Status of generation ("processing", "completed", "failed")
* data (Dict[str, str], optional): Generated text with fields:
* llmstxt (str): Generated LLMs.txt content
* llmsfulltxt (str, optional): Full version if requested
* error (str, optional): Error message if generation failed
* expiresAt (str): When the generated data expires
Raises:
Exception: If the status check fails.
Exception: If the status check fails.
"""
headers = self._prepare_headers()
try:
@ -2172,52 +2170,57 @@ class FirecrawlApp:
def deep_research(
self,
query: str,
params: Optional[Union[Dict[str, Any], DeepResearchParams]] = None,
*,
max_depth: Optional[int] = None,
time_limit: Optional[int] = None,
max_urls: Optional[int] = None,
analysis_prompt: Optional[str] = None,
system_prompt: Optional[str] = None,
__experimental_stream_steps: Optional[bool] = None,
on_activity: Optional[Callable[[Dict[str, Any]], None]] = None,
on_source: Optional[Callable[[Dict[str, Any]], None]] = None) -> DeepResearchStatusResponse:
"""
Initiates a deep research operation on a given query and polls until completion.
Args:
query: Research query or topic to investigate
params: See DeepResearchParams model:
Research Settings:
* maxDepth - Maximum research depth (default: 7)
* timeLimit - Time limit in seconds (default: 270)
* maxUrls - Maximum URLs to process (default: 20)
Callbacks:
* on_activity - Progress callback receiving:
{type, status, message, timestamp, depth}
* on_source - Source discovery callback receiving:
{url, title, description}
query (str): Research query or topic to investigate
max_depth (Optional[int]): Maximum depth of research exploration
time_limit (Optional[int]): Time limit in seconds for research
max_urls (Optional[int]): Maximum number of URLs to process
analysis_prompt (Optional[str]): Custom prompt for analysis
system_prompt (Optional[str]): Custom system prompt
__experimental_stream_steps (Optional[bool]): Enable experimental streaming
on_activity (Optional[Callable]): Progress callback receiving {type, status, message, timestamp, depth}
on_source (Optional[Callable]): Source discovery callback receiving {url, title, description}
Returns:
DeepResearchResponse containing:
Status:
* success - Whether research completed successfully
* status - Current state (processing/completed/failed)
* error - Error message if failed
Results:
* id - Unique identifier for the research job
* data - Research findings and analysis
* sources - List of discovered sources
* activities - Research progress log
* summaries - Generated research summaries
DeepResearchStatusResponse containing:
* success (bool): Whether research completed successfully
* status (str): Current state (processing/completed/failed)
* error (Optional[str]): Error message if failed
* id (str): Unique identifier for the research job
* data (Any): Research findings and analysis
* sources (List[Dict]): List of discovered sources
* activities (List[Dict]): Research progress log
* summaries (List[str]): Generated research summaries
Raises:
Exception: If research fails
Exception: If research fails
"""
if params is None:
params = {}
if isinstance(params, dict):
research_params = DeepResearchParams(**params)
else:
research_params = params
research_params = {}
if max_depth is not None:
research_params['maxDepth'] = max_depth
if time_limit is not None:
research_params['timeLimit'] = time_limit
if max_urls is not None:
research_params['maxUrls'] = max_urls
if analysis_prompt is not None:
research_params['analysisPrompt'] = analysis_prompt
if system_prompt is not None:
research_params['systemPrompt'] = system_prompt
if __experimental_stream_steps is not None:
research_params['__experimental_streamSteps'] = __experimental_stream_steps
research_params = DeepResearchParams(**research_params)
response = self.async_deep_research(query, research_params)
if not response.get('success') or 'id' not in response:
@ -2253,19 +2256,30 @@ class FirecrawlApp:
return {'success': False, 'error': 'Deep research job terminated unexpectedly'}
def async_deep_research(self, query: str, params: Optional[Union[Dict[str, Any], DeepResearchParams]] = None) -> Dict[str, Any]:
def async_deep_research(
self,
query: str,
*,
max_depth: Optional[int] = None,
time_limit: Optional[int] = None,
max_urls: Optional[int] = None,
analysis_prompt: Optional[str] = None,
system_prompt: Optional[str] = None,
__experimental_stream_steps: Optional[bool] = None) -> Dict[str, Any]:
"""
Initiates an asynchronous deep research operation.
Args:
query (str): The research query to investigate. Should be a clear, specific question or topic.
params (Optional[Union[Dict[str, Any], DeepResearchParams]]): Research configuration parameters:
* maxDepth (int, optional): Maximum depth of research exploration (default: 7)
* timeLimit (int, optional): Time limit in seconds for research (default: 270)
* maxUrls (int, optional): Maximum number of URLs to process (default: 20)
query (str): Research query or topic to investigate
max_depth (Optional[int]): Maximum depth of research exploration
time_limit (Optional[int]): Time limit in seconds for research
max_urls (Optional[int]): Maximum number of URLs to process
analysis_prompt (Optional[str]): Custom prompt for analysis
system_prompt (Optional[str]): Custom system prompt
__experimental_stream_steps (Optional[bool]): Enable experimental streaming
Returns:
DeepResearchResponse: A response containing:
Dict[str, Any]: A response containing:
* success (bool): Whether the research initiation was successful
* id (str): The unique identifier for the research job
* error (str, optional): Error message if initiation failed
@ -2273,13 +2287,20 @@ class FirecrawlApp:
Raises:
Exception: If the research initiation fails.
"""
if params is None:
params = {}
if isinstance(params, dict):
research_params = DeepResearchParams(**params)
else:
research_params = params
research_params = {}
if max_depth is not None:
research_params['maxDepth'] = max_depth
if time_limit is not None:
research_params['timeLimit'] = time_limit
if max_urls is not None:
research_params['maxUrls'] = max_urls
if analysis_prompt is not None:
research_params['analysisPrompt'] = analysis_prompt
if system_prompt is not None:
research_params['systemPrompt'] = system_prompt
if __experimental_stream_steps is not None:
research_params['__experimental_streamSteps'] = __experimental_stream_steps
research_params = DeepResearchParams(**research_params)
headers = self._prepare_headers()