Merge pull request #1477 from aparupganguly/examples/gpt-4.1-company-researcher

Add examples/gpt-4.1 Company Researcher
This commit is contained in:
Eric Ciarla 2025-04-18 10:16:11 -07:00 committed by GitHub
commit e583fddeb4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 608 additions and 0 deletions

View File

@ -0,0 +1,4 @@
# API Keys
OPENAI_API_KEY=your_openai_api_key_here
FIRECRAWL_API_KEY=your_firecrawl_api_key_here
SERP_API_KEY=your_serpapi_key_here

View File

@ -0,0 +1,111 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
# PyInstaller
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# Environment variables
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# VSCode
.vscode/
# PyCharm
.idea/

View File

@ -0,0 +1,65 @@
# GPT-4.1 Company Researcher
A Python tool that uses GPT-4.1, Firecrawl, and SerpAPI to research companies and extract structured information.
## Features
- Search for company information using Google (via SerpAPI)
- Analyze search results with GPT-4.1 to identify relevant URLs
- Extract structured data from websites using Firecrawl
- Deduplicate and consolidate information for higher quality results
- Interactive command-line interface
## Requirements
- Python 3.8+
- OpenAI API key (with GPT-4.1 access)
- Firecrawl API key
- SerpAPI key
## Installation
1. Clone this repository
2. Install dependencies:
```
pip install -r requirements.txt
```
3. Copy the `.env.example` file to `.env` and add your API keys:
```
cp .env.example .env
```
4. Edit the `.env` file with your actual API keys
## Usage
Run the script:
```bash
python gpt-4.1-company-researcher.py
```
You will be prompted to:
1. Enter a company name
2. Specify what information you want about the company
The tool will then:
- Search for relevant information
- Select the most appropriate URLs using GPT-4.1
- Extract structured data using Firecrawl
- Deduplicate and consolidate the information
- Display the results in JSON format
## Example
```
Enter the company name: Anthropic
Enter what information you want about the company: founders and funding details
# Results will display structured information about Anthropic's founders and funding
```
## License
MIT

View File

@ -0,0 +1,423 @@
import os
import json
import time
import requests
from dotenv import load_dotenv
from serpapi.google_search import GoogleSearch
from openai import OpenAI
# ANSI color codes
class Colors:
CYAN = '\033[96m'
YELLOW = '\033[93m'
GREEN = '\033[92m'
RED = '\033[91m'
MAGENTA = '\033[95m'
BLUE = '\033[94m'
RESET = '\033[0m'
# Load environment variables
load_dotenv()
# Initialize clients
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
print(f"{Colors.RED}Error: OPENAI_API_KEY not found in environment variables{Colors.RESET}")
client = OpenAI(api_key=openai_api_key)
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY")
serp_api_key = os.getenv("SERP_API_KEY")
if not firecrawl_api_key:
print(f"{Colors.RED}Warning: FIRECRAWL_API_KEY not found in environment variables{Colors.RESET}")
if not serp_api_key:
print(f"{Colors.RED}Error: SERP_API_KEY not found in environment variables{Colors.RESET}")
def search_google(query, company):
"""Search Google using SerpAPI and return top results."""
print(f"{Colors.YELLOW}Searching Google for information about {company}...{Colors.RESET}")
if not serp_api_key:
print(f"{Colors.RED}Cannot search Google: SERP_API_KEY is missing{Colors.RESET}")
return []
# Create a more effective search query
search_query = f"{company} company {query}"
params = {
"q": search_query,
"api_key": serp_api_key,
"engine": "google",
"google_domain": "google.com",
"gl": "us",
"hl": "en",
"num": 10 # Request more results
}
try:
search = GoogleSearch(params)
results = search.get_dict()
if "error" in results:
print(f"{Colors.RED}SerpAPI Error: {results['error']}{Colors.RESET}")
return []
organic_results = results.get("organic_results", [])
if not organic_results:
print(f"{Colors.YELLOW}No organic results found, trying alternative search...{Colors.RESET}")
# Try an alternative search
alt_params = params.copy()
alt_params["q"] = company
try:
alt_search = GoogleSearch(alt_params)
alt_results = alt_search.get_dict()
if "error" not in alt_results:
organic_results = alt_results.get("organic_results", [])
except Exception as e:
print(f"{Colors.RED}Error in alternative search: {str(e)}{Colors.RESET}")
print(f"{Colors.GREEN}Found {len(organic_results)} search results{Colors.RESET}")
return organic_results
except Exception as e:
print(f"{Colors.RED}Error in search_google: {str(e)}{Colors.RESET}")
return []
def validate_official_source(url, company):
"""Check if a URL is likely an official company source."""
company_name = company.lower().replace(" ", "")
url_lower = url.lower()
# Special cases
if "ycombinator.com/companies/" in url_lower:
return True
if "workatastartup.com/companies/" in url_lower:
return True
if "crunchbase.com/organization/" in url_lower:
return True
if "producthunt.com" in url_lower:
return True
# Main domain check - more flexible approach
domain = url_lower.split("//")[1].split("/")[0] if "//" in url_lower else url_lower
# Company website usually has company name in domain
company_terms = company_name.split()
for term in company_terms:
if len(term) > 3 and term in domain: # Only match on significant terms
return True
# Common TLDs for tech companies
if ".com" in url_lower or ".org" in url_lower or ".net" in url_lower or ".dev" in url_lower or ".io" in url_lower or ".ai" in url_lower:
domain_without_tld = domain.split(".")[0]
if company_name.replace(" ", "") in domain_without_tld.replace("-", "").replace(".", ""):
return True
# Explicitly non-official sources
non_official_patterns = [
"linkedin.com", "facebook.com", "twitter.com",
"instagram.com", "medium.com", "bloomberg.com"
]
for pattern in non_official_patterns:
if pattern in url_lower:
return False
# For any other domain that got through the filters, consider it potentially official
return True
def select_urls_with_gpt(company, objective, serp_results):
"""
Use GPT-4.1 to select URLs from SERP results.
Returns a list of URLs.
"""
try:
serp_data = [{"title": r.get("title"), "link": r.get("link"), "snippet": r.get("snippet")}
for r in serp_results if r.get("link")]
print(f"{Colors.CYAN}Found {len(serp_data)} search results to analyze{Colors.RESET}")
if not serp_data:
print(f"{Colors.YELLOW}No search results found to analyze{Colors.RESET}")
return []
prompt = (
"Task: Select the most relevant URLs from search results that contain factual information about the company.\n\n"
"Instructions:\n"
"1. Prioritize official company websites and documentation\n"
"2. Select URLs that directly contain information about the requested topic\n"
"3. Return ONLY a JSON object with the following structure: {\"selected_urls\": [\"url1\", \"url2\"]}\n"
"4. Include up to 3 most relevant URLs\n"
"5. Consider startup directories like Crunchbase, YCombinator, ProductHunt as good sources\n"
"6. If official website is available, prioritize it first\n"
f"Company: {company}\n"
f"Information Needed: {objective}\n"
f"Search Results: {json.dumps(serp_data, indent=2)}\n\n"
"Response Format: {\"selected_urls\": [\"https://example.com\", \"https://example2.com\"]}\n"
)
try:
print(f"{Colors.YELLOW}Calling OpenAI model...{Colors.RESET}")
response = client.chat.completions.create(
model="gpt-4.1",
messages=[{"role": "user", "content": prompt}],
)
cleaned_response = response.choices[0].message.content.strip()
import re
json_match = re.search(r'\{[\s\S]*"selected_urls"[\s\S]*\}', cleaned_response)
if json_match:
cleaned_response = json_match.group(0)
if cleaned_response.startswith('```'):
cleaned_response = cleaned_response.split('```')[1]
if cleaned_response.startswith('json'):
cleaned_response = cleaned_response[4:]
cleaned_response = cleaned_response.strip()
try:
result = json.loads(cleaned_response)
if isinstance(result, dict) and "selected_urls" in result:
urls = result["selected_urls"]
else:
urls = []
except json.JSONDecodeError:
urls = [line.strip() for line in cleaned_response.split('\n')
if line.strip().startswith(('http://', 'https://'))]
cleaned_urls = [url.replace('/*', '').rstrip('/') for url in urls]
cleaned_urls = [url for url in cleaned_urls if url]
if not cleaned_urls:
print(f"{Colors.YELLOW}No valid URLs found in response.{Colors.RESET}")
return []
for url in cleaned_urls:
print(f"- {url} {Colors.RESET}")
# Consider all selected URLs as valid sources
return cleaned_urls[:3] # Limit to top 3
except Exception as e:
print(f"{Colors.RED}Error calling OpenAI: {str(e)}{Colors.RESET}")
return []
except Exception as e:
print(f"{Colors.RED}Error selecting URLs: {str(e)}{Colors.RESET}")
return []
def extract_company_info(urls, prompt, company, api_key):
"""Use requests to call Firecrawl's extract endpoint with selected URLs."""
print(f"{Colors.YELLOW}Extracting structured data from the provided URLs using Firecrawl...{Colors.RESET}")
headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {api_key}'
}
enhanced_prompt = (
f"Extract factual information about {prompt} for {company}.\n"
f"Stick STRICTLY to information found on the provided URLs and DO NOT add any additional facts that are not explicitly mentioned.\n"
f"Only extract information EXACTLY as stated in the source - no inferences or additions.\n"
f"If information on {prompt} is not clearly provided in the source documents, just leave fields empty."
)
payload = {
"urls": urls,
"prompt": enhanced_prompt,
"enableWebSearch": False
}
try:
response = requests.post(
"https://api.firecrawl.dev/v1/extract",
headers=headers,
json=payload,
timeout=120
)
if response.status_code != 200:
print(f"{Colors.RED}API returned status code {response.status_code}: {response.text}{Colors.RESET}")
return None
data = response.json()
if not data.get('success'):
print(f"{Colors.RED}API returned error: {data.get('error', 'No error message')}{Colors.RESET}")
return None
extraction_id = data.get('id')
if not extraction_id:
print(f"{Colors.RED}No extraction ID found in response.{Colors.RESET}")
return None
return poll_firecrawl_result(extraction_id, api_key, interval=5, max_attempts=120)
except requests.exceptions.Timeout:
print(f"{Colors.RED}Request timed out. The operation might still be processing in the background.{Colors.RESET}")
print(f"{Colors.YELLOW}You may want to try again with fewer URLs or a more specific prompt.{Colors.RESET}")
return None
except requests.exceptions.RequestException as e:
print(f"{Colors.RED}Request failed: {e}{Colors.RESET}")
return None
except json.JSONDecodeError as e:
print(f"{Colors.RED}Failed to parse response: {e}{Colors.RESET}")
return None
except Exception as e:
print(f"{Colors.RED}Failed to extract data: {e}{Colors.RESET}")
return None
def poll_firecrawl_result(extraction_id, api_key, interval=10, max_attempts=60):
"""Poll Firecrawl API to get the extraction result."""
url = f"https://api.firecrawl.dev/v1/extract/{extraction_id}"
headers = {
'Authorization': f'Bearer {api_key}'
}
print(f"{Colors.YELLOW}Waiting for extraction to complete...{Colors.RESET}")
for attempt in range(1, max_attempts + 1):
try:
response = requests.get(url, headers=headers, timeout=30)
response.raise_for_status()
data = response.json()
if data.get('success') and data.get('data'):
print(f"{Colors.GREEN}Data successfully extracted{Colors.RESET}")
return data['data']
elif data.get('success') and not data.get('data'):
if attempt % 6 == 0:
print(f"{Colors.YELLOW}Still processing... (attempt {attempt}/{max_attempts}){Colors.RESET}")
time.sleep(interval)
else:
print(f"{Colors.RED}API Error: {data.get('error', 'No error message provided')}{Colors.RESET}")
return None
except requests.exceptions.RequestException as e:
print(f"{Colors.RED}Request error: {str(e)}{Colors.RESET}")
return None
except json.JSONDecodeError as e:
print(f"{Colors.RED}JSON parsing error: {str(e)}{Colors.RESET}")
return None
except Exception as e:
print(f"{Colors.RED}Unexpected error: {str(e)}{Colors.RESET}")
return None
print(f"{Colors.RED}Max polling attempts reached. Extraction did not complete in time.{Colors.RESET}")
return None
def deduplicate_data(data):
"""Deduplicate data from the extraction results."""
if not data:
return data
print(f"{Colors.YELLOW}Deduplicating extracted data...{Colors.RESET}")
for key, value in data.items():
if isinstance(value, list):
if value and isinstance(value[0], dict):
seen = set()
unique_items = []
for item in value:
item_tuple = tuple(sorted((k, str(v)) for k, v in item.items()))
if item_tuple not in seen:
seen.add(item_tuple)
unique_items.append(item)
data[key] = unique_items
print(f"{Colors.GREEN}Deduplicated '{key}': removed {len(value) - len(unique_items)} duplicate entries{Colors.RESET}")
else:
unique_items = list(dict.fromkeys(value))
data[key] = unique_items
print(f"{Colors.GREEN}Deduplicated '{key}': removed {len(value) - len(unique_items)} duplicate entries{Colors.RESET}")
return data
def consolidate_data(data, company):
"""Consolidate data by filling in missing fields and removing lower quality entries."""
if not data:
return data
print(f"{Colors.YELLOW}Consolidating and validating data...{Colors.RESET}")
for key, value in data.items():
if isinstance(value, list) and value and isinstance(value[0], dict):
if 'name' in value[0]:
consolidated = {}
for item in value:
name = item.get('name', '').strip().lower()
if not name:
continue
if len(name) < 2 or len(name) > 50:
continue
name_parts = name.split()
if len(name_parts) == 1:
found = False
for full_name in list(consolidated.keys()):
if full_name.startswith(name) or full_name.endswith(name):
found = True
break
if found:
continue
if name not in consolidated or len(item) > len(consolidated[name]):
consolidated[name] = item
data[key] = list(consolidated.values())
print(f"{Colors.GREEN}Consolidated '{key}': {len(value)} entries into {len(data[key])} unique entries{Colors.RESET}")
# Clean up output data - remove empty fields
for key, value in data.items():
if isinstance(value, list):
for item in value:
if isinstance(item, dict):
# Remove empty string values
for field_key in list(item.keys()):
if item[field_key] == "":
# For 'role' field, set default to "Founder" if empty
if field_key == 'role':
item[field_key] = "Founder"
else:
del item[field_key]
return data
def main():
company = input(f"{Colors.BLUE}Enter the company name: {Colors.RESET}")
objective = input(f"{Colors.BLUE}Enter what information you want about the company: {Colors.RESET}")
serp_results = search_google(objective, company)
if not serp_results:
print(f"{Colors.RED}No search results found.{Colors.RESET}")
return
selected_urls = select_urls_with_gpt(company, objective, serp_results)
if not selected_urls:
print(f"{Colors.RED}No URLs were selected.{Colors.RESET}")
return
raw_data = extract_company_info(selected_urls, objective, company, firecrawl_api_key)
if raw_data:
deduped_data = deduplicate_data(raw_data)
final_data = consolidate_data(deduped_data, company)
print(json.dumps(final_data, indent=2))
print(f"{Colors.GREEN}Extraction completed successfully.{Colors.RESET}")
else:
print(f"{Colors.RED}Failed to extract the requested information. Try refining your prompt or choosing a different company.{Colors.RESET}")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,5 @@
python-dotenv==1.0.1
requests==2.31.0
serpapi-python==0.1.5
openai==1.12.0
firecrawl==0.1.2