import time import nest_asyncio import uuid from firecrawl.firecrawl import FirecrawlApp from pydantic import BaseModel, Field from typing import List app = FirecrawlApp(api_key="fc-") # Scrape a website: scrape_result = app.scrape_url('firecrawl.dev') print(scrape_result['markdown']) # Test batch scrape urls = ['https://example.com', 'https://docs.firecrawl.dev'] batch_scrape_params = { 'formats': ['markdown', 'html'], } # Synchronous batch scrape batch_result = app.batch_scrape_urls(urls, batch_scrape_params) print("Synchronous Batch Scrape Result:") print(batch_result['data'][0]['markdown']) # Asynchronous batch scrape async_batch_result = app.async_batch_scrape_urls(urls, batch_scrape_params) print("\nAsynchronous Batch Scrape Result:") print(async_batch_result) # Crawl a website: idempotency_key = str(uuid.uuid4()) # optional idempotency key crawl_result = app.crawl_url('firecrawl.dev', {'excludePaths': ['blog/*']}, 2, idempotency_key) print(crawl_result) # Asynchronous Crawl a website: async_result = app.async_crawl_url('firecrawl.dev', {'excludePaths': ['blog/*']}, "") print(async_result) crawl_status = app.check_crawl_status(async_result['id']) print(crawl_status) attempts = 15 while attempts > 0 and crawl_status['status'] != 'completed': print(crawl_status) crawl_status = app.check_crawl_status(async_result['id']) attempts -= 1 time.sleep(1) crawl_status = app.get_crawl_status(async_result['id']) print(crawl_status) # LLM Extraction: # Define schema to extract contents into using pydantic class ArticleSchema(BaseModel): title: str points: int by: str commentsURL: str class TopArticlesSchema(BaseModel): top: List[ArticleSchema] = Field(..., description="Top 5 stories") llm_extraction_result = app.scrape_url('https://news.ycombinator.com', { 'formats': ['extract'], 'extract': { 'schema': TopArticlesSchema.model_json_schema() } }) print(llm_extraction_result['extract']) # # Define schema to extract contents into using json schema json_schema = { "type": "object", "properties": { "top": { "type": "array", "items": { "type": "object", "properties": { "title": {"type": "string"}, "points": {"type": "number"}, "by": {"type": "string"}, "commentsURL": {"type": "string"} }, "required": ["title", "points", "by", "commentsURL"] }, "minItems": 5, "maxItems": 5, "description": "Top 5 stories on Hacker News" } }, "required": ["top"] } app2 = FirecrawlApp(api_key="fc-", version="v0") llm_extraction_result = app2.scrape_url('https://news.ycombinator.com', { 'extractorOptions': { 'extractionSchema': json_schema, 'mode': 'llm-extraction' }, 'pageOptions':{ 'onlyMainContent': True } }) # print(llm_extraction_result['llm_extraction']) # Map a website: map_result = app.map_url('https://firecrawl.dev', { 'search': 'blog' }) print(map_result) # Extract URLs: class ExtractSchema(BaseModel): title: str description: str links: List[str] # Define the schema using Pydantic extract_schema = ExtractSchema.schema() # Perform the extraction extract_result = app.extract(['https://firecrawl.dev'], { 'prompt': "Extract the title, description, and links from the website", 'schema': extract_schema }) print(extract_result) # Crawl a website with WebSockets: # inside an async function... nest_asyncio.apply() # Define event handlers def on_document(detail): print("DOC", detail) def on_error(detail): print("ERR", detail['error']) def on_done(detail): print("DONE", detail['status']) # Function to start the crawl and watch process async def start_crawl_and_watch(): # Initiate the crawl job and get the watcher watcher = app.crawl_url_and_watch('firecrawl.dev', { 'excludePaths': ['blog/*'], 'limit': 5 }) # Add event listeners watcher.add_event_listener("document", on_document) watcher.add_event_listener("error", on_error) watcher.add_event_listener("done", on_done) # Start the watcher await watcher.connect()