import time import nest_asyncio import uuid import asyncio from firecrawl.firecrawl import AsyncFirecrawlApp, ScrapeOptions, JsonConfig from pydantic import BaseModel, Field from typing import List app = AsyncFirecrawlApp(api_url="https://api.firecrawl.dev") async def example_scrape(): # Scrape a website: scrape_result = await app.scrape_url('example.com', formats=["markdown", "html"]) print(scrape_result.markdown) async def example_batch_scrape(): # Batch scrape urls = ['https://example.com', 'https://docs.firecrawl.dev'] # Synchronous batch scrape batch_result = await app.batch_scrape_urls(urls, formats=["markdown", "html"]) print("Synchronous Batch Scrape Result:") print(batch_result.data[0].markdown) # Asynchronous batch scrape async_batch_result = await app.async_batch_scrape_urls(urls, formats=["markdown", "html"]) print("\nAsynchronous Batch Scrape Result:") print(async_batch_result) async def example_crawl(): # Crawl a website: crawl_result = await app.crawl_url('firecrawl.dev', exclude_paths=['blog/*']) print(crawl_result.data[0].markdown) # Asynchronous Crawl a website: async_result = await app.async_crawl_url('firecrawl.dev', exclude_paths=['blog/*']) print(async_result) crawl_status = await app.check_crawl_status(async_result.id) print(crawl_status) attempts = 15 while attempts > 0 and crawl_status.status != 'completed': print(crawl_status) crawl_status = await app.check_crawl_status(async_result.id) attempts -= 1 await asyncio.sleep(1) # Use async sleep instead of time.sleep crawl_status = await app.check_crawl_status(async_result.id) print(crawl_status) async def example_llm_extraction(): # Define schema to extract contents into using pydantic class ArticleSchema(BaseModel): title: str points: int by: str commentsURL: str class TopArticlesSchema(BaseModel): top: List[ArticleSchema] = Field(..., description="Top 5 stories") extract_config = JsonConfig(schema=TopArticlesSchema.model_json_schema()) llm_extraction_result = await app.scrape_url('https://news.ycombinator.com', formats=["extract"], extract=extract_config) print(llm_extraction_result.extract) async def example_map_and_extract(): # Map a website: map_result = await app.map_url('https://firecrawl.dev', search="blog") print(map_result) # Extract URLs: class ExtractSchema(BaseModel): title: str description: str links: List[str] # Define the schema using Pydantic extract_schema = ExtractSchema.schema() # Perform the extraction extract_result = await app.extract(['https://firecrawl.dev'], prompt="Extract the title, description, and links from the website", schema=extract_schema) print(extract_result) async def example_deep_research(): # Deep research example research_result = await app.deep_research( "What are the latest developments in large language models?", max_urls=4 ) print("Research Results:", research_result) async def example_generate_llms_text(): # Generate LLMs.txt example llms_result = await app.generate_llms_text( "https://firecrawl.dev") print("LLMs.txt Results:", llms_result) # Define event handlers for websocket def on_document(detail): print("DOC", detail) def on_error(detail): print("ERR", detail['error']) def on_done(detail): print("DONE", detail['status']) async def example_websocket_crawl(): # Initiate the crawl job and get the watcher watcher = await app.crawl_url_and_watch('firecrawl.dev', { 'excludePaths': ['blog/*'], 'limit': 5 }) # Add event listeners watcher.add_event_listener("document", on_document) watcher.add_event_listener("error", on_error) watcher.add_event_listener("done", on_done) # Start the watcher await watcher.connect() async def main(): nest_asyncio.apply() await example_scrape() await example_batch_scrape() await example_crawl() await example_llm_extraction() await example_map_and_extract() await example_websocket_crawl() await example_deep_research() await example_generate_llms_text() if __name__ == "__main__": asyncio.run(main())