firecrawl/examples/gemini-2.0-crawler/gemini-2.0-crawler.py

375 lines
14 KiB
Python

import os
from firecrawl import FirecrawlApp
import json
import re
import requests
from requests.exceptions import RequestException
from dotenv import load_dotenv
import google.genai as genai
# Load environment variables
load_dotenv()
# Retrieve API keys from environment variables
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY")
gemini_api_key = os.getenv("GEMINI_API_KEY")
# Initialize the FirecrawlApp and Gemini client
app = FirecrawlApp(api_key=firecrawl_api_key)
client = genai.Client(api_key=gemini_api_key) # Create Gemini client
model_name = "gemini-2.0-flash"
types = genai.types
# ANSI color codes
class Colors:
CYAN = '\033[96m'
YELLOW = '\033[93m'
GREEN = '\033[92m'
RED = '\033[91m'
MAGENTA = '\033[95m'
BLUE = '\033[94m'
RESET = '\033[0m'
def pdf_size_in_mb(data: bytes) -> float:
"""Utility function to estimate PDF size in MB from raw bytes."""
return len(data) / (1024 * 1024)
def gemini_extract_pdf_content(pdf_url, objective):
"""
Downloads a PDF from pdf_url, then calls Gemini to extract text.
Returns a string with the extracted text only.
"""
try:
pdf_data = requests.get(pdf_url, timeout=15).content
size_mb = pdf_size_in_mb(pdf_data)
if size_mb > 15:
print(
f"{Colors.YELLOW}Warning: PDF size is {size_mb} MB. Skipping PDF extraction.{Colors.RESET}")
return ""
prompt = f"""
The objective is: {objective}.
From this PDF, extract only the text that helps address this objective.
If it contains no relevant info, return an empty string.
"""
response = client.models.generate_content(
model=model_name,
contents=[
types.Part.from_bytes(
data=pdf_data, mime_type="application/pdf"),
prompt
]
)
return response.text.strip()
except Exception as e:
print(f"Error using Gemini to process PDF '{pdf_url}': {str(e)}")
return ""
def gemini_extract_image_data(image_url):
"""
Downloads an image from image_url, then calls Gemini to:
1) Summarize what's in the image
Returns a string with the summary.
"""
try:
print(f"Gemini IMAGE extraction from: {image_url}")
image_data = requests.get(image_url, timeout=15).content
# 1) Summarize
resp_summary = client.models.generate_content([
"Describe the contents of this image in a short paragraph.",
types.Part.from_bytes(data=image_data, mime_type="image/jpeg"),
])
summary_text = resp_summary.text.strip()
return f"**Image Summary**:\n{summary_text}"
except Exception as e:
print(f"Error using Gemini to process Image '{image_url}': {str(e)}")
return ""
def extract_urls_from_markdown(markdown_text):
"""
Simple regex-based approach to extract potential URLs from a markdown string.
We look for http(s)://someurl up until a space or parenthesis or quote, etc.
"""
pattern = r'(https?://[^\s\'")]+)'
found = re.findall(pattern, markdown_text)
return list(set(found)) # unique them
def detect_mime_type(url, timeout=8):
"""
Attempt a HEAD request to detect the Content-Type. Return 'pdf', 'image' or None if undetermined.
Also validates image extensions for supported formats.
"""
try:
resp = requests.head(url, timeout=timeout, allow_redirects=True)
ctype = resp.headers.get('Content-Type', '').lower()
exts = ['.jpg', '.jpeg', '.png', '.gif', '.webp', '.heic', '.heif']
if 'pdf' in ctype:
return 'pdf'
elif ctype.startswith('image/') and any(url.lower().endswith(ext) for ext in exts):
return 'image'
else:
return None
except RequestException as e:
print(f"Warning: HEAD request failed for {url}. Error: {e}")
return None
def find_relevant_page_via_map(objective, url, app):
try:
print(f"{Colors.CYAN}Understood. The objective is: {objective}{Colors.RESET}")
print(f"{Colors.CYAN}Initiating search on the website: {url}{Colors.RESET}")
map_prompt = f"""
Based on the objective of: {objective}, provide a 1-2 word search parameter that will help find the information.
Respond with ONLY 1-2 words, no other text or formatting.
"""
print(
f"{Colors.YELLOW}Analyzing objective to determine optimal search parameter...{Colors.RESET}")
# Use gemini-pro instead of gemini-2.0-flash
response = client.models.generate_content(
model=model_name,
contents=[map_prompt]
)
map_search_parameter = response.text.strip()
print(
f"{Colors.GREEN}Optimal search parameter identified: {map_search_parameter}{Colors.RESET}")
print(
f"{Colors.YELLOW}Mapping website using the identified search parameter...{Colors.RESET}")
map_website = app.map_url(url, params={"search": map_search_parameter})
print(f"{Colors.MAGENTA}Debug - Map response structure: {json.dumps(map_website, indent=2)}{Colors.RESET}")
print(f"{Colors.GREEN}Website mapping completed successfully.{Colors.RESET}")
if isinstance(map_website, dict):
links = map_website.get('urls', []) or map_website.get('links', [])
elif isinstance(map_website, str):
try:
parsed = json.loads(map_website)
links = parsed.get('urls', []) or parsed.get('links', [])
except json.JSONDecodeError:
links = []
else:
links = map_website if isinstance(map_website, list) else []
if not links:
print(f"{Colors.RED}No links found in map response.{Colors.RESET}")
return None
rank_prompt = f"""RESPOND ONLY WITH JSON.
Analyze these URLs and rank the top 3 most relevant ones for finding information about: {objective}
Return ONLY a JSON array in this exact format - no other text or explanation:
[
{{
"url": "http://example.com",
"relevance_score": 95,
"reason": "Main about page with company information"
}},
{{
"url": "http://example2.com",
"relevance_score": 85,
"reason": "Team page with details"
}},
{{
"url": "http://example3.com",
"relevance_score": 75,
"reason": "Blog post about company"
}}
]
URLs to analyze:
{json.dumps(links, indent=2)}"""
print(f"{Colors.YELLOW}Ranking URLs by relevance to objective...{Colors.RESET}")
response = client.models.generate_content(
model=model_name,
contents=[rank_prompt]
)
print(f"{Colors.MAGENTA}Debug - Raw Gemini response:{Colors.RESET}")
print(response.text)
try:
response_text = response.text.strip()
print(f"{Colors.MAGENTA}Debug - Cleaned response:{Colors.RESET}")
print(response_text)
if '[' in response_text and ']' in response_text:
start_idx = response_text.find('[')
end_idx = response_text.rfind(']') + 1
json_str = response_text[start_idx:end_idx]
print(
f"{Colors.MAGENTA}Debug - Extracted JSON string:{Colors.RESET}")
print(json_str)
ranked_results = json.loads(json_str)
else:
print(f"{Colors.RED}No JSON array found in response{Colors.RESET}")
return None
links = [result["url"] for result in ranked_results]
print(f"{Colors.CYAN}Top 3 ranked URLs:{Colors.RESET}")
for result in ranked_results:
print(f"{Colors.GREEN}URL: {result['url']}{Colors.RESET}")
print(
f"{Colors.YELLOW}Relevance Score: {result['relevance_score']}{Colors.RESET}")
print(f"{Colors.BLUE}Reason: {result['reason']}{Colors.RESET}")
print("---")
if not links:
print(f"{Colors.RED}No relevant links identified.{Colors.RESET}")
return None
except json.JSONDecodeError as e:
print(f"{Colors.RED}Error parsing ranked results: {str(e)}{Colors.RESET}")
print(f"{Colors.RED}Failed JSON string: {response_text}{Colors.RESET}")
return None
except Exception as e:
print(f"{Colors.RED}Unexpected error: {str(e)}{Colors.RESET}")
return None
print(f"{Colors.GREEN}Located {len(links)} relevant links.{Colors.RESET}")
return links
except Exception as e:
print(
f"{Colors.RED}Error encountered during relevant page identification: {str(e)}{Colors.RESET}")
return None
def find_objective_in_top_pages(map_website, objective, app):
try:
if not map_website:
print(f"{Colors.RED}No links found to analyze.{Colors.RESET}")
return None
top_links = map_website[:3]
print(
f"{Colors.CYAN}Proceeding to analyze top {len(top_links)} links: {top_links}{Colors.RESET}")
for link in top_links:
print(f"{Colors.YELLOW}Initiating scrape of page: {link}{Colors.RESET}")
scrape_result = app.scrape_url(
link, params={'formats': ['markdown']})
print(
f"{Colors.GREEN}Page scraping completed successfully.{Colors.RESET}")
# Now detect any PDF or image URLs in the Markdown text
page_markdown = scrape_result.get('markdown', '')
if not page_markdown:
print(
f"{Colors.RED}No markdown returned for {link}, skipping...{Colors.RESET}")
continue
found_urls = extract_urls_from_markdown(page_markdown)
pdf_image_append = ""
for sub_url in found_urls:
mime_type_short = detect_mime_type(sub_url)
if mime_type_short == 'pdf':
print(
f"{Colors.YELLOW} Detected PDF: {sub_url}. Extracting content...{Colors.RESET}")
pdf_content = gemini_extract_pdf_content(sub_url)
if pdf_content:
pdf_image_append += f"\n\n---\n[PDF from {sub_url}]:\n{pdf_content}"
elif mime_type_short == 'image':
print(
f"{Colors.YELLOW} Detected Image: {sub_url}. Extracting content...{Colors.RESET}")
image_content = gemini_extract_image_data(sub_url)
if image_content:
pdf_image_append += f"\n\n---\n[Image from {sub_url}]:\n{image_content}"
# Append extracted PDF/image text to the main markdown for the page
if pdf_image_append:
scrape_result[
'markdown'] += f"\n\n---\n**Additional Gemini Extraction:**\n{pdf_image_append}\n"
check_prompt = f"""
Analyze this content to find: {objective}
If found, return ONLY a JSON object with information related to the objective. If not found, respond EXACTLY with: Objective not met
Content to analyze:
{scrape_result['markdown']}
Remember:
- Return valid JSON if information is found
- Return EXACTLY "Objective not met" if not found
- No other text or explanations
"""
response = client.models.generate_content(
model=model_name,
contents=[check_prompt]
)
result = response.text.strip()
print(f"{Colors.MAGENTA}Debug - Check response:{Colors.RESET}")
print(result)
if result != "Objective not met":
print(
f"{Colors.GREEN}Objective potentially fulfilled. Relevant information identified.{Colors.RESET}")
try:
if '{' in result and '}' in result:
start_idx = result.find('{')
end_idx = result.rfind('}') + 1
json_str = result[start_idx:end_idx]
return json.loads(json_str)
else:
print(
f"{Colors.RED}No JSON object found in response{Colors.RESET}")
except json.JSONDecodeError:
print(
f"{Colors.RED}Error in parsing response. Proceeding to next page...{Colors.RESET}")
else:
print(
f"{Colors.YELLOW}Objective not met on this page. Proceeding to next link...{Colors.RESET}")
print(f"{Colors.RED}All available pages analyzed. Objective not fulfilled in examined content.{Colors.RESET}")
return None
except Exception as e:
print(
f"{Colors.RED}Error encountered during page analysis: {str(e)}{Colors.RESET}")
return None
def main():
url = input(f"{Colors.BLUE}Enter the website to crawl : {Colors.RESET}")
objective = input(f"{Colors.BLUE}Enter your objective: {Colors.RESET}")
print(f"{Colors.YELLOW}Initiating web crawling process...{Colors.RESET}")
map_website = find_relevant_page_via_map(objective, url, app)
if map_website:
print(f"{Colors.GREEN}Relevant pages identified. Proceeding with detailed analysis using gemini-pro...{Colors.RESET}")
result = find_objective_in_top_pages(map_website, objective, app)
if result:
print(
f"{Colors.GREEN}Objective successfully fulfilled. Extracted information:{Colors.RESET}")
print(f"{Colors.MAGENTA}{json.dumps(result, indent=2)}{Colors.RESET}")
else:
print(
f"{Colors.RED}Unable to fulfill the objective with the available content.{Colors.RESET}")
else:
print(f"{Colors.RED}No relevant pages identified. Consider refining the search parameters or trying a different website.{Colors.RESET}")
if __name__ == "__main__":
main()