mirror of
https://git.mirrors.martin98.com/https://github.com/mendableai/firecrawl
synced 2025-08-02 19:30:36 +08:00
296 lines
7.8 KiB
TypeScript
296 lines
7.8 KiB
TypeScript
import { ExtractorOptions, PageOptions } from "./../../lib/entities";
|
|
import { Request, Response } from "express";
|
|
import {
|
|
billTeam,
|
|
checkTeamCredits,
|
|
} from "../../services/billing/credit_billing";
|
|
import { authenticateUser } from "../auth";
|
|
import { PlanType, RateLimiterMode } from "../../types";
|
|
import { logJob } from "../../services/logging/log_job";
|
|
import { Document } from "../../lib/entities";
|
|
import { isUrlBlocked } from "../../scraper/WebScraper/utils/blocklist"; // Import the isUrlBlocked function
|
|
import { numTokensFromString } from "../../lib/LLM-extraction/helpers";
|
|
import {
|
|
defaultPageOptions,
|
|
defaultExtractorOptions,
|
|
defaultTimeout,
|
|
defaultOrigin,
|
|
} from "../../lib/default-values";
|
|
import { addScrapeJob, waitForJob } from "../../services/queue-jobs";
|
|
import { getScrapeQueue } from "../../services/queue-service";
|
|
import { v4 as uuidv4 } from "uuid";
|
|
import { Logger } from "../../lib/logger";
|
|
import * as Sentry from "@sentry/node";
|
|
import { getJobPriority } from "../../lib/job-priority";
|
|
|
|
export async function scrapeHelper(
|
|
jobId: string,
|
|
req: Request,
|
|
team_id: string,
|
|
crawlerOptions: any,
|
|
pageOptions: PageOptions,
|
|
extractorOptions: ExtractorOptions,
|
|
timeout: number,
|
|
plan?: PlanType
|
|
): Promise<{
|
|
success: boolean;
|
|
error?: string;
|
|
data?: Document;
|
|
returnCode: number;
|
|
}> {
|
|
const url = req.body.url;
|
|
if (typeof url !== "string") {
|
|
return { success: false, error: "Url is required", returnCode: 400 };
|
|
}
|
|
|
|
if (isUrlBlocked(url)) {
|
|
return {
|
|
success: false,
|
|
error:
|
|
"Firecrawl currently does not support social media scraping due to policy restrictions. We're actively working on building support for it.",
|
|
returnCode: 403,
|
|
};
|
|
}
|
|
|
|
const jobPriority = await getJobPriority({ plan, team_id, basePriority: 10 });
|
|
|
|
const job = await addScrapeJob(
|
|
{
|
|
url,
|
|
mode: "single_urls",
|
|
crawlerOptions,
|
|
team_id,
|
|
pageOptions,
|
|
extractorOptions,
|
|
origin: req.body.origin ?? defaultOrigin,
|
|
is_scrape: true,
|
|
},
|
|
{},
|
|
jobId,
|
|
jobPriority
|
|
);
|
|
|
|
let doc;
|
|
|
|
const err = await Sentry.startSpan(
|
|
{
|
|
name: "Wait for job to finish",
|
|
op: "bullmq.wait",
|
|
attributes: { job: jobId },
|
|
},
|
|
async (span) => {
|
|
try {
|
|
doc = (await waitForJob(job.id, timeout))[0];
|
|
} catch (e) {
|
|
if (e instanceof Error && e.message.startsWith("Job wait")) {
|
|
span.setAttribute("timedOut", true);
|
|
return {
|
|
success: false,
|
|
error: "Request timed out",
|
|
returnCode: 408,
|
|
};
|
|
} else if (
|
|
typeof e === "string" &&
|
|
(e.includes("Error generating completions: ") ||
|
|
e.includes("Invalid schema for function") ||
|
|
e.includes(
|
|
"LLM extraction did not match the extraction schema you provided."
|
|
))
|
|
) {
|
|
return {
|
|
success: false,
|
|
error: e,
|
|
returnCode: 500,
|
|
};
|
|
} else {
|
|
throw e;
|
|
}
|
|
}
|
|
span.setAttribute("result", JSON.stringify(doc));
|
|
return null;
|
|
}
|
|
);
|
|
|
|
if (err !== null) {
|
|
return err;
|
|
}
|
|
|
|
await job.remove();
|
|
|
|
if (!doc) {
|
|
console.error("!!! PANIC DOC IS", doc, job);
|
|
return {
|
|
success: true,
|
|
error: "No page found",
|
|
returnCode: 200,
|
|
data: doc,
|
|
};
|
|
}
|
|
|
|
delete doc.index;
|
|
delete doc.provider;
|
|
|
|
// Remove rawHtml if pageOptions.rawHtml is false and extractorOptions.mode is llm-extraction-from-raw-html
|
|
if (
|
|
!pageOptions.includeRawHtml &&
|
|
extractorOptions.mode == "llm-extraction-from-raw-html"
|
|
) {
|
|
if (doc.rawHtml) {
|
|
delete doc.rawHtml;
|
|
}
|
|
}
|
|
|
|
if (!pageOptions.includeHtml) {
|
|
if (doc.html) {
|
|
delete doc.html;
|
|
}
|
|
}
|
|
|
|
return {
|
|
success: true,
|
|
data: doc,
|
|
returnCode: 200,
|
|
};
|
|
}
|
|
|
|
export async function scrapeController(req: Request, res: Response) {
|
|
try {
|
|
let earlyReturn = false;
|
|
// make sure to authenticate user first, Bearer <token>
|
|
const { success, team_id, error, status, plan } = await authenticateUser(
|
|
req,
|
|
res,
|
|
RateLimiterMode.Scrape
|
|
);
|
|
if (!success) {
|
|
return res.status(status).json({ error });
|
|
}
|
|
|
|
const crawlerOptions = req.body.crawlerOptions ?? {};
|
|
const pageOptions = { ...defaultPageOptions, ...req.body.pageOptions };
|
|
const extractorOptions = {
|
|
...defaultExtractorOptions,
|
|
...req.body.extractorOptions,
|
|
};
|
|
const origin = req.body.origin ?? defaultOrigin;
|
|
let timeout = req.body.timeout ?? defaultTimeout;
|
|
|
|
if (extractorOptions.mode.includes("llm-extraction")) {
|
|
if (
|
|
typeof extractorOptions.extractionSchema !== "object" ||
|
|
extractorOptions.extractionSchema === null
|
|
) {
|
|
return res.status(400).json({
|
|
error:
|
|
"extractorOptions.extractionSchema must be an object if llm-extraction mode is specified",
|
|
});
|
|
}
|
|
|
|
pageOptions.onlyMainContent = true;
|
|
timeout = req.body.timeout ?? 90000;
|
|
}
|
|
|
|
// checkCredits
|
|
try {
|
|
const { success: creditsCheckSuccess, message: creditsCheckMessage } =
|
|
await checkTeamCredits(team_id, 1);
|
|
if (!creditsCheckSuccess) {
|
|
earlyReturn = true;
|
|
return res.status(402).json({ error: "Insufficient credits" });
|
|
}
|
|
} catch (error) {
|
|
Logger.error(error);
|
|
earlyReturn = true;
|
|
return res.status(500).json({
|
|
error:
|
|
"Error checking team credits. Please contact hello@firecrawl.com for help.",
|
|
});
|
|
}
|
|
|
|
const jobId = uuidv4();
|
|
|
|
const startTime = new Date().getTime();
|
|
const result = await scrapeHelper(
|
|
jobId,
|
|
req,
|
|
team_id,
|
|
crawlerOptions,
|
|
pageOptions,
|
|
extractorOptions,
|
|
timeout,
|
|
plan
|
|
);
|
|
const endTime = new Date().getTime();
|
|
const timeTakenInSeconds = (endTime - startTime) / 1000;
|
|
const numTokens =
|
|
result.data && result.data.markdown
|
|
? numTokensFromString(result.data.markdown, "gpt-3.5-turbo")
|
|
: 0;
|
|
|
|
if (result.success) {
|
|
let creditsToBeBilled = 1;
|
|
const creditsPerLLMExtract = 49;
|
|
|
|
if (extractorOptions.mode.includes("llm-extraction")) {
|
|
// creditsToBeBilled = creditsToBeBilled + (creditsPerLLMExtract * filteredDocs.length);
|
|
creditsToBeBilled += creditsPerLLMExtract;
|
|
}
|
|
|
|
let startTimeBilling = new Date().getTime();
|
|
|
|
if (earlyReturn) {
|
|
// Don't bill if we're early returning
|
|
return;
|
|
}
|
|
if (creditsToBeBilled > 0) {
|
|
// billing for doc done on queue end, bill only for llm extraction
|
|
billTeam(team_id, creditsToBeBilled).catch(error => {
|
|
Logger.error(`Failed to bill team ${team_id} for ${creditsToBeBilled} credits: ${error}`);
|
|
// Optionally, you could notify an admin or add to a retry queue here
|
|
});
|
|
}
|
|
}
|
|
|
|
let doc = result.data;
|
|
if (!pageOptions || !pageOptions.includeRawHtml) {
|
|
if (doc && doc.rawHtml) {
|
|
delete doc.rawHtml;
|
|
}
|
|
}
|
|
|
|
if(pageOptions && pageOptions.includeExtract) {
|
|
if(!pageOptions.includeMarkdown && doc && doc.markdown) {
|
|
delete doc.markdown;
|
|
}
|
|
}
|
|
|
|
logJob({
|
|
job_id: jobId,
|
|
success: result.success,
|
|
message: result.error,
|
|
num_docs: 1,
|
|
docs: [doc],
|
|
time_taken: timeTakenInSeconds,
|
|
team_id: team_id,
|
|
mode: "scrape",
|
|
url: req.body.url,
|
|
crawlerOptions: crawlerOptions,
|
|
pageOptions: pageOptions,
|
|
origin: origin,
|
|
extractor_options: extractorOptions,
|
|
num_tokens: numTokens,
|
|
});
|
|
|
|
return res.status(result.returnCode).json(result);
|
|
} catch (error) {
|
|
Sentry.captureException(error);
|
|
Logger.error(error);
|
|
return res.status(500).json({
|
|
error:
|
|
typeof error === "string"
|
|
? error
|
|
: error?.message ?? "Internal Server Error",
|
|
});
|
|
}
|
|
}
|