init upload

This commit is contained in:
Haijunlv 2025-01-13 15:30:05 +00:00
parent 75910108db
commit a3a93764f1
14 changed files with 2493 additions and 1 deletions

7
.gitattributes vendored
View File

@ -44,4 +44,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.tar filter=lfs diff=lfs merge=lfs -text
*.wasm filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
model-00001-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
model-00002-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
model-00003-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
model-00004-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
tokenizer.model filter=lfs diff=lfs merge=lfs -text

37
config.json Normal file
View File

@ -0,0 +1,37 @@
{
"architectures": [
"InternLM3ForCausalLM"
],
"attention_dropout": 0.0,
"auto_map": {
"AutoConfig": "configuration_internlm3.InternLM3Config",
"AutoModel": "modeling_internlm3.InternLM3Model",
"AutoModelForCausalLM": "modeling_internlm3.InternLM3ForCausalLM"
},
"bias": false,
"bos_token_id": 1,
"eos_token_id": 2,
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 10240,
"max_position_embeddings": 32768,
"model_type": "internlm3",
"num_attention_heads": 32,
"num_hidden_layers": 48,
"num_key_value_heads": 2,
"pad_token_id": 2,
"qkv_bias": false,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"factor": 6.0,
"rope_type": "dynamic"
},
"rope_theta": 50000000,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.47.1",
"use_cache": true,
"vocab_size": 128512
}

197
configuration_internlm3.py Normal file
View File

@ -0,0 +1,197 @@
# coding=utf-8
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" InternLM3 model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging
logger = logging.get_logger(__name__)
class InternLM3Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the InternLM3 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`InternLM3Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22016):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
qkv_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key and value projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in o_proj, up_proj, down_proj and gate_proj layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_heads
```python
>>> from transformers import InternLM3Model, InternLM3Config
>>> # Initializing a InternLM3 style configuration
>>> configuration = InternLM3Config()
>>> # Initializing a model from the InternLM3-8B style configuration
>>> model = InternLM3Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "internlm3"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `InternLM3`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
def __init__(
self,
vocab_size=128512,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
qkv_bias=False,
attention_dropout=0.0,
bias=False,
head_dim=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.qkv_bias = qkv_bias
self.attention_dropout = attention_dropout
self.bias = bias
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

9
generation_config.json Normal file
View File

@ -0,0 +1,9 @@
{
"bos_token_id": 1,
"eos_token_id": [
2,
128131
],
"pad_token_id": 2,
"transformers_version": "4.47.1"
}

BIN
model-00001-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00002-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00003-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00004-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -0,0 +1,442 @@
{
"metadata": {
"total_size": 35216965632
},
"weight_map": {
"lm_head.weight": "model-00004-of-00004.safetensors",
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.10.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.11.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.22.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.23.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.24.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.25.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.26.input_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.35.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.35.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.35.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.35.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.35.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.35.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.36.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.36.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.36.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.36.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.36.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.36.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.36.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.36.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.36.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.37.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.37.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.37.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.37.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.37.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.37.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.37.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.37.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.37.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.38.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.38.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.38.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.38.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.38.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.38.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.38.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.38.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.38.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.39.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.39.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.39.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.39.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.39.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.39.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.39.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.39.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.39.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.40.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.40.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.40.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.40.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.40.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.40.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.40.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.40.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.40.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.41.input_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.41.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.41.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.41.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.41.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
"model.layers.41.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.41.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.41.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.41.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.42.input_layernorm.weight": "model-00004-of-00004.safetensors",
"model.layers.42.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.42.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.42.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.42.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
"model.layers.42.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.42.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.42.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.42.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
"model.layers.43.input_layernorm.weight": "model-00004-of-00004.safetensors",
"model.layers.43.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.43.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.43.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.43.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
"model.layers.43.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.43.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.43.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.43.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.44.input_layernorm.weight": "model-00004-of-00004.safetensors",
"model.layers.44.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.44.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.44.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.44.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
"model.layers.44.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.44.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.44.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.44.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.45.input_layernorm.weight": "model-00004-of-00004.safetensors",
"model.layers.45.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.45.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.45.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.45.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
"model.layers.45.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.45.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.45.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.45.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.46.input_layernorm.weight": "model-00004-of-00004.safetensors",
"model.layers.46.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.46.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.46.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.46.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
"model.layers.46.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.46.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.46.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.46.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.47.input_layernorm.weight": "model-00004-of-00004.safetensors",
"model.layers.47.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.47.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.47.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.47.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
"model.layers.47.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.47.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.47.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.47.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
"model.norm.weight": "model-00004-of-00004.safetensors"
}
}

1190
modeling_internlm3.py Normal file

File diff suppressed because it is too large Load Diff

54
special_tokens_map.json Normal file
View File

@ -0,0 +1,54 @@
{
"additional_special_tokens": [
"<|im_start|>",
"<|im_end|>",
"<|action_start|>",
"<|action_end|>",
"<|interpreter|>",
"<|plugin|>",
"<restate>",
"</restate>",
"<planning>",
"</planning>",
"<recollect>",
"</recollect>",
"<execution>",
"</execution>",
"<review>",
"</review>",
"<summarize>",
"</summarize>",
"<retry>",
"</retry>",
"<conclude>",
"</conclude>"
],
"bos_token": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"eos_token": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"unk_token": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
}

294
tokenization_internlm3.py Normal file
View File

@ -0,0 +1,294 @@
import os
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging
if TYPE_CHECKING:
from transformers.tokenization_utils_base import TextInput
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
SPIECE_UNDERLINE = ""
class InternLM3Tokenizer(PreTrainedTokenizer):
"""
Construct a InternLM3 tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
no padding token in the original model.
Args:
vocab_file (`str`):
Path to the vocabulary file.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
The end of sequence token.
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
Whether or not the default system prompt for InternLM3 should be used.
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to add spaces between special tokens.
spaces_for_interleaved_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to add spaces between special tokens that are interleaved with normal tokens.
add_prefix_space (`bool`, *optional*, defaults to `True`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. Again, this should be set with `from_slow=True` to make sure it's taken into account.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
clean_up_tokenization_spaces=False,
use_default_system_prompt=False,
spaces_between_special_tokens=False,
spaces_for_interleaved_special_tokens=False,
add_prefix_space=True,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.use_default_system_prompt = use_default_system_prompt
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
self.add_prefix_space = add_prefix_space
self.spaces_for_interleaved_special_tokens = spaces_for_interleaved_special_tokens
vocab_size = self.sp_model.get_piece_size()
self.decoder = {i: self.sp_model.id_to_piece(i) for i in range(vocab_size)}
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
sp_model_kwargs=sp_model_kwargs,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
use_default_system_prompt=use_default_system_prompt,
spaces_between_special_tokens=spaces_between_special_tokens,
add_prefix_space=add_prefix_space,
**kwargs,
)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
def __setstate__(self, d):
self.__dict__.update(d)
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
@property
def vocab_size(self):
"""Returns vocab size"""
return self.sp_model.get_piece_size()
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
"""
Args:
text: TextInput
Simply calls PreTrainedTokenizer's method
"""
return super().tokenize(text, **kwargs)
def _tokenize(self, text, **kwargs):
"""
Args:
text: TextInput
Returns a tokenized string. The Gemma tokenizer never adds a prefix space.
"""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, "")
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
# since we manually add the prefix space, we have to remove it when decoding
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
tokens[0] = tokens[0][1:]
current_sub_tokens = []
out_string = ""
prev_is_special = False
for i, token in enumerate(tokens):
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special and i != 0 and self.spaces_for_interleaved_special_tokens:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
if (
prev_is_special
and i == 1
and self.add_prefix_space
and not token.startswith(SPIECE_UNDERLINE)
and self.spaces_for_interleaved_special_tokens
):
out_string += " "
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id
def create_token_type_ids_from_sequences(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
if token_ids_1 is not None:
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
return output

BIN
tokenizer.model (Stored with Git LFS) Normal file

Binary file not shown.

249
tokenizer_config.json Normal file
View File

@ -0,0 +1,249 @@
{
"add_bos_token": true,
"add_eos_token": false,
"add_prefix_space": true,
"added_tokens_decoder": {
"0": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"1": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"2": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128111": {
"content": "<restate>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128112": {
"content": "</restate>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128113": {
"content": "<planning>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128114": {
"content": "</planning>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128115": {
"content": "<recollect>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128116": {
"content": "</recollect>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128117": {
"content": "<execution>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128118": {
"content": "</execution>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128119": {
"content": "<review>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128120": {
"content": "</review>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128121": {
"content": "<summarize>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128122": {
"content": "</summarize>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128123": {
"content": "<retry>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128124": {
"content": "</retry>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128125": {
"content": "<conclude>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128126": {
"content": "</conclude>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128127": {
"content": "<|plugin|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128128": {
"content": "<|interpreter|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128129": {
"content": "<|action_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128130": {
"content": "<|action_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128131": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"128132": {
"content": "<|im_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"additional_special_tokens": [
"<|im_start|>",
"<|im_end|>",
"<|action_start|>",
"<|action_end|>",
"<|interpreter|>",
"<|plugin|>",
"<restate>",
"</restate>",
"<planning>",
"</planning>",
"<recollect>",
"</recollect>",
"<execution>",
"</execution>",
"<review>",
"</review>",
"<summarize>",
"</summarize>",
"<retry>",
"</retry>",
"<conclude>",
"</conclude>"
],
"auto_map": {
"AutoTokenizer": [
"tokenization_internlm3.InternLM3Tokenizer",
null
]
},
"bos_token": "<s>",
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
"clean_up_tokenization_spaces": false,
"eos_token": "</s>",
"extra_special_tokens": {},
"model_max_length": 1000000000000000019884624838656,
"pad_token": "</s>",
"sp_model_kwargs": {},
"spaces_between_special_tokens": false,
"tokenizer_class": "InternLM3Tokenizer",
"unk_token": "<unk>",
"use_default_system_prompt": false
}