Merge pull request #8212 from ashm-dev/main

feat: Small optimization
This commit is contained in:
Timothy Jaeryang Baek 2024-12-30 16:00:18 -08:00 committed by GitHub
commit 9b56b64cfa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,9 +1,8 @@
import logging import logging
import os import os
import uuid import heapq
from typing import Optional, Union from typing import Optional, Union
import asyncio
import requests import requests
from huggingface_hub import snapshot_download from huggingface_hub import snapshot_download
@ -34,8 +33,6 @@ class VectorSearchRetriever(BaseRetriever):
def _get_relevant_documents( def _get_relevant_documents(
self, self,
query: str, query: str,
*,
run_manager: CallbackManagerForRetrieverRun,
) -> list[Document]: ) -> list[Document]:
result = VECTOR_DB_CLIENT.search( result = VECTOR_DB_CLIENT.search(
collection_name=self.collection_name, collection_name=self.collection_name,
@ -47,15 +44,12 @@ class VectorSearchRetriever(BaseRetriever):
metadatas = result.metadatas[0] metadatas = result.metadatas[0]
documents = result.documents[0] documents = result.documents[0]
results = [] return [
for idx in range(len(ids)):
results.append(
Document( Document(
metadata=metadatas[idx], metadata=metadatas[idx],
page_content=documents[idx], page_content=documents[idx],
) ) for idx in range(len(ids))
) ]
return results
def query_doc( def query_doc(
@ -64,13 +58,11 @@ def query_doc(
k: int, k: int,
): ):
try: try:
result = VECTOR_DB_CLIENT.search( if result := VECTOR_DB_CLIENT.search(
collection_name=collection_name, collection_name=collection_name,
vectors=[query_embedding], vectors=[query_embedding],
limit=k, limit=k,
) ):
if result:
log.info(f"query_doc:result {result.ids} {result.metadatas}") log.info(f"query_doc:result {result.ids} {result.metadatas}")
return result return result
@ -135,45 +127,39 @@ def query_doc_with_hybrid_search(
def merge_and_sort_query_results( def merge_and_sort_query_results(
query_results: list[dict], k: int, reverse: bool = False query_results: list[dict], k: int, reverse: bool = False
) -> list[dict]: ) -> list[dict]:
# Initialize lists to store combined data if not query_results:
combined_distances = [] return {
combined_documents = [] "distances": [[]],
combined_metadatas = [] "documents": [[]],
"metadatas": [[]],
}
for data in query_results: combined = (
combined_distances.extend(data["distances"][0]) (data.get("distances", [float('inf')])[0],
combined_documents.extend(data["documents"][0]) data.get("documents", [None])[0],
combined_metadatas.extend(data["metadatas"][0]) data.get("metadatas", [{}])[0])
for data in query_results
)
# Create a list of tuples (distance, document, metadata) if reverse:
combined = list(zip(combined_distances, combined_documents, combined_metadatas)) top_k = heapq.nlargest(k, combined, key=lambda x: x[0])
# Sort the list based on distances
combined.sort(key=lambda x: x[0], reverse=reverse)
# We don't have anything :-(
if not combined:
sorted_distances = []
sorted_documents = []
sorted_metadatas = []
else: else:
# Unzip the sorted list top_k = heapq.nsmallest(k, combined, key=lambda x: x[0])
sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
# Slicing the lists to include only k elements if not top_k:
sorted_distances = list(sorted_distances)[:k] return {
sorted_documents = list(sorted_documents)[:k] "distances": [[]],
sorted_metadatas = list(sorted_metadatas)[:k] "documents": [[]],
"metadatas": [[]],
# Create the output dictionary }
result = { else:
sorted_distances, sorted_documents, sorted_metadatas = zip(*top_k)
return {
"distances": [sorted_distances], "distances": [sorted_distances],
"documents": [sorted_documents], "documents": [sorted_documents],
"metadatas": [sorted_metadatas], "metadatas": [sorted_metadatas],
} }
return result
def query_collection( def query_collection(
collection_names: list[str], collection_names: list[str],
@ -185,19 +171,18 @@ def query_collection(
for query in queries: for query in queries:
query_embedding = embedding_function(query) query_embedding = embedding_function(query)
for collection_name in collection_names: for collection_name in collection_names:
if collection_name: if not collection_name:
continue
try: try:
result = query_doc( if result := query_doc(
collection_name=collection_name, collection_name=collection_name,
k=k, k=k,
query_embedding=query_embedding, query_embedding=query_embedding,
) ):
if result is not None:
results.append(result.model_dump()) results.append(result.model_dump())
except Exception as e: except Exception as e:
log.exception(f"Error when querying the collection: {e}") log.exception(f"Error when querying the collection: {e}")
else:
pass
return merge_and_sort_query_results(results, k=k) return merge_and_sort_query_results(results, k=k)
@ -213,8 +198,8 @@ def query_collection_with_hybrid_search(
results = [] results = []
error = False error = False
for collection_name in collection_names: for collection_name in collection_names:
try:
for query in queries: for query in queries:
try:
result = query_doc_with_hybrid_search( result = query_doc_with_hybrid_search(
collection_name=collection_name, collection_name=collection_name,
query=query, query=query,
@ -259,10 +244,10 @@ def get_embedding_function(
def generate_multiple(query, func): def generate_multiple(query, func):
if isinstance(query, list): if isinstance(query, list):
embeddings = [] return [
for i in range(0, len(query), embedding_batch_size): func(query[i : i + embedding_batch_size])
embeddings.extend(func(query[i : i + embedding_batch_size])) for i in range(0, len(query), embedding_batch_size)
return embeddings ]
else: else:
return func(query) return func(query)
@ -436,7 +421,6 @@ def generate_openai_batch_embeddings(
def generate_ollama_batch_embeddings( def generate_ollama_batch_embeddings(
model: str, texts: list[str], url: str, key: str = "" model: str, texts: list[str], url: str, key: str = ""
) -> Optional[list[list[float]]]: ) -> Optional[list[list[float]]]:
try:
r = requests.post( r = requests.post(
f"{url}/api/embed", f"{url}/api/embed",
headers={ headers={
@ -445,17 +429,19 @@ def generate_ollama_batch_embeddings(
}, },
json={"input": texts, "model": model}, json={"input": texts, "model": model},
) )
try:
r.raise_for_status() r.raise_for_status()
data = r.json()
if "embeddings" in data:
return data["embeddings"]
else:
raise "Something went wrong :/"
except Exception as e: except Exception as e:
print(e) print(e)
return None return None
data = r.json()
if 'embeddings' not in data:
raise "Something went wrong :/"
return data['embeddings']
def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs): def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs):
url = kwargs.get("url", "") url = kwargs.get("url", "")