Reuse loaded modules if possible (#5231)

### What problem does this PR solve?

Reuse loaded modules if possible

### Type of change

- [x] Refactoring
This commit is contained in:
Zhichang Yu 2025-02-21 17:21:01 +08:00 committed by GitHub
parent 392f28882f
commit 0151d42156
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 18 additions and 53 deletions

View File

@ -31,6 +31,7 @@ import onnxruntime as ort
from .postprocess import build_post_process
loaded_models = {}
def transform(data, ops=None):
""" transform """
@ -67,6 +68,12 @@ def create_operators(op_param_list, global_config=None):
def load_model(model_dir, nm):
model_file_path = os.path.join(model_dir, nm + ".onnx")
global loaded_models
loaded_model = loaded_models.get(model_file_path)
if loaded_model:
logging.info(f"load_model {model_file_path} reuses cached model")
return loaded_model
if not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(
model_file_path))
@ -102,15 +109,17 @@ def load_model(model_dir, nm):
provider_options=[cuda_provider_options]
)
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:0")
logging.info(f"TextRecognizer {nm} uses GPU")
logging.info(f"load_model {model_file_path} uses GPU")
else:
sess = ort.InferenceSession(
model_file_path,
options=options,
providers=['CPUExecutionProvider'])
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "cpu")
logging.info(f"TextRecognizer {nm} uses CPU")
return sess, sess.get_inputs()[0], run_options
logging.info(f"load_model {model_file_path} uses CPU")
loaded_model = (sess, run_options)
loaded_models[model_file_path] = loaded_model
return loaded_model
class TextRecognizer(object):
@ -123,7 +132,8 @@ class TextRecognizer(object):
"use_space_char": True
}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.run_options = load_model(model_dir, 'rec')
self.predictor, self.run_options = load_model(model_dir, 'rec')
self.input_tensor = self.predictor.get_inputs()[0]
def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
@ -408,7 +418,8 @@ class TextDetector(object):
"unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.run_options = load_model(model_dir, 'det')
self.predictor, self.run_options = load_model(model_dir, 'det')
self.input_tensor = self.predictor.get_inputs()[0]
img_h, img_w = self.input_tensor.shape[2:]
if isinstance(img_h, str) or isinstance(img_w, str):

View File

@ -21,14 +21,12 @@ import numpy as np
import cv2
from functools import cmp_to_key
import onnxruntime as ort
from huggingface_hub import snapshot_download
from api.utils.file_utils import get_project_base_directory
from .operators import * # noqa: F403
from .operators import preprocess
from . import operators
from .ocr import load_model
class Recognizer(object):
def __init__(self, label_list, task_name, model_dir=None):
@ -47,51 +45,7 @@ class Recognizer(object):
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
model_file_path = os.path.join(model_dir, task_name + ".onnx")
if not os.path.exists(model_file_path):
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
model_file_path = os.path.join(model_dir, task_name + ".onnx")
else:
model_file_path = os.path.join(model_dir, task_name + ".onnx")
if not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(
model_file_path))
def cuda_is_available():
try:
import torch
if torch.cuda.is_available():
return True
except Exception:
return False
return False
# https://github.com/microsoft/onnxruntime/issues/9509#issuecomment-951546580
# Shrink GPU memory after execution
self.run_options = ort.RunOptions()
if cuda_is_available():
options = ort.SessionOptions()
options.enable_cpu_mem_arena = False
cuda_provider_options = {
"device_id": 0, # Use specific GPU
"gpu_mem_limit": 512 * 1024 * 1024, # Limit gpu memory
"arena_extend_strategy": "kNextPowerOfTwo", # gpu memory allocation strategy
}
self.ort_sess = ort.InferenceSession(
model_file_path, options=options,
providers=['CUDAExecutionProvider'],
provider_options=[cuda_provider_options]
)
self.run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:0")
logging.info(f"Recognizer {task_name} uses GPU")
else:
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
self.run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "cpu")
logging.info(f"Recognizer {task_name} uses CPU")
self.ort_sess, self.run_options = load_model(model_dir, task_name)
self.input_names = [node.name for node in self.ort_sess.get_inputs()]
self.output_names = [node.name for node in self.ort_sess.get_outputs()]
self.input_shape = self.ort_sess.get_inputs()[0].shape[2:4]