mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-14 06:45:58 +08:00
0517 list chunks (#821)
### What problem does this PR solve? #717 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
parent
9f0f5b45cc
commit
081f922ee6
@ -39,6 +39,9 @@ from itsdangerous import URLSafeTimedSerializer
|
||||
from api.utils.file_utils import filename_type, thumbnail
|
||||
from rag.utils.minio_conn import MINIO
|
||||
|
||||
from rag.utils.es_conn import ELASTICSEARCH
|
||||
from rag.nlp import search
|
||||
from elasticsearch_dsl import Q
|
||||
|
||||
def generate_confirmation_token(tenent_id):
|
||||
serializer = URLSafeTimedSerializer(tenent_id)
|
||||
@ -347,3 +350,43 @@ def upload():
|
||||
return server_error_response(e)
|
||||
|
||||
return get_json_result(data=doc_result.to_json())
|
||||
|
||||
|
||||
@manager.route('/list_chunks', methods=['POST'])
|
||||
# @login_required
|
||||
def list_chunks():
|
||||
token = request.headers.get('Authorization').split()[1]
|
||||
objs = APIToken.query(token=token)
|
||||
if not objs:
|
||||
return get_json_result(
|
||||
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
|
||||
|
||||
form_data = request.form
|
||||
|
||||
try:
|
||||
if "doc_name" in form_data.keys():
|
||||
tenant_id = DocumentService.get_tenant_id_by_name(form_data['doc_name'])
|
||||
q = Q("match", docnm_kwd=form_data['doc_name'])
|
||||
|
||||
elif "doc_id" in form_data.keys():
|
||||
tenant_id = DocumentService.get_tenant_id(form_data['doc_id'])
|
||||
q = Q("match", doc_id=form_data['doc_id'])
|
||||
else:
|
||||
return get_json_result(
|
||||
data=False,retmsg="Can't find doc_name or doc_id"
|
||||
)
|
||||
|
||||
res_es_search = ELASTICSEARCH.search(q,idxnm=search.index_name(tenant_id),timeout="600s")
|
||||
|
||||
res = [{} for _ in range(len(res_es_search['hits']['hits']))]
|
||||
|
||||
for index , chunk in enumerate(res_es_search['hits']['hits']):
|
||||
res[index]['doc_name'] = chunk['_source']['docnm_kwd']
|
||||
res[index]['content'] = chunk['_source']['content_with_weight']
|
||||
if 'img_id' in chunk['_source'].keys():
|
||||
res[index]['img_id'] = chunk['_source']['img_id']
|
||||
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
return get_json_result(data=res)
|
||||
|
@ -166,6 +166,19 @@ class DocumentService(CommonService):
|
||||
return
|
||||
return docs[0]["tenant_id"]
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_tenant_id_by_name(cls, name):
|
||||
docs = cls.model.select(
|
||||
Knowledgebase.tenant_id).join(
|
||||
Knowledgebase, on=(
|
||||
Knowledgebase.id == cls.model.kb_id)).where(
|
||||
cls.model.name == name, Knowledgebase.status == StatusEnum.VALID.value)
|
||||
docs = docs.dicts()
|
||||
if not docs:
|
||||
return
|
||||
return docs[0]["tenant_id"]
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_thumbnails(cls, docids):
|
||||
|
@ -364,3 +364,38 @@ This is usually used when upload a file to.
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
## Get document chunks
|
||||
|
||||
Get the chunks of the document based on doc_name or doc_id.
|
||||
### Path: /api/list_chunks/
|
||||
### Method: POST
|
||||
|
||||
### Parameter:
|
||||
|
||||
| Name | Type | Optional | Description |
|
||||
|----------|--------|----------|---------------------------------|
|
||||
| `doc_name` | string | Yes | The name of the document in the knowledge base. It must not be empty if `doc_id` is not set.|
|
||||
| `doc_id` | string | Yes | The ID of the document in the knowledge base. It must not be empty if `doc_name` is not set.|
|
||||
|
||||
|
||||
### Response
|
||||
```json
|
||||
{
|
||||
"data": [
|
||||
{
|
||||
"content": "Figure 14: Per-request neural-net processingof RL-Cache.\n103\n(sn)\nCPU\n 102\nGPU\n8101\n100\n8\n16 64 256 1K\n4K",
|
||||
"doc_name": "RL-Cache.pdf",
|
||||
"img_id": "0335167613f011ef91240242ac120006-b46c3524952f82dbe061ce9b123f2211"
|
||||
},
|
||||
{
|
||||
"content": "4.3 ProcessingOverheadof RL-CacheACKNOWLEDGMENTSThis section evaluates how eectively our RL-Cache implemen-tation leverages modern multi-core CPUs and GPUs to keep the per-request neural-net processing overhead low. Figure 14 depictsThis researchwas supported inpart by the Regional Government of Madrid (grant P2018/TCS-4499, EdgeData-CM)andU.S. National Science Foundation (grants CNS-1763617 andCNS-1717179).REFERENCES",
|
||||
"doc_name": "RL-Cache.pdf",
|
||||
"img_id": "0335167613f011ef91240242ac120006-d4c12c43938eb55d2d8278eea0d7e6d7"
|
||||
}
|
||||
],
|
||||
"retcode": 0,
|
||||
"retmsg": "success"
|
||||
}
|
||||
|
||||
```
|
||||
|
Loading…
x
Reference in New Issue
Block a user