mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-12 15:19:02 +08:00
Fix some issues in API and test (#3001)
### What problem does this PR solve? Fix some issues in API and test ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
This commit is contained in:
parent
e997b42504
commit
161c7a231b
@ -30,9 +30,9 @@ from api.utils.api_utils import get_result
|
||||
@token_required
|
||||
def create(tenant_id):
|
||||
req=request.json
|
||||
ids= req.get("datasets")
|
||||
ids= req.get("dataset_ids")
|
||||
if not ids:
|
||||
return get_error_data_result(retmsg="`datasets` is required")
|
||||
return get_error_data_result(retmsg="`dataset_ids` is required")
|
||||
for kb_id in ids:
|
||||
kbs = KnowledgebaseService.query(id=kb_id,tenant_id=tenant_id)
|
||||
if not kbs:
|
||||
@ -138,7 +138,7 @@ def create(tenant_id):
|
||||
res["llm"] = res.pop("llm_setting")
|
||||
res["llm"]["model_name"] = res.pop("llm_id")
|
||||
del res["kb_ids"]
|
||||
res["datasets"] = req["datasets"]
|
||||
res["dataset_ids"] = req["dataset_ids"]
|
||||
res["avatar"] = res.pop("icon")
|
||||
return get_result(data=res)
|
||||
|
||||
@ -148,8 +148,8 @@ def update(tenant_id,chat_id):
|
||||
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
|
||||
return get_error_data_result(retmsg='You do not own the chat')
|
||||
req =request.json
|
||||
ids = req.get("datasets")
|
||||
if "datasets" in req:
|
||||
ids = req.get("dataset_ids")
|
||||
if "dataset_ids" in req:
|
||||
if not ids:
|
||||
return get_error_data_result("`datasets` can't be empty")
|
||||
if ids:
|
||||
@ -214,8 +214,8 @@ def update(tenant_id,chat_id):
|
||||
# avatar
|
||||
if "avatar" in req:
|
||||
req["icon"] = req.pop("avatar")
|
||||
if "datasets" in req:
|
||||
req.pop("datasets")
|
||||
if "dataset_ids" in req:
|
||||
req.pop("dataset_ids")
|
||||
if not DialogService.update_by_id(chat_id, req):
|
||||
return get_error_data_result(retmsg="Chat not found!")
|
||||
return get_result()
|
||||
|
@ -550,33 +550,32 @@ def update_chunk(tenant_id,dataset_id,document_id,chunk_id):
|
||||
@token_required
|
||||
def retrieval_test(tenant_id):
|
||||
req = request.json
|
||||
if not req.get("datasets"):
|
||||
if not req.get("dataset_ids"):
|
||||
return get_error_data_result("`datasets` is required.")
|
||||
kb_ids = req["datasets"]
|
||||
kb_ids = req["dataset_ids"]
|
||||
if not isinstance(kb_ids,list):
|
||||
return get_error_data_result("`datasets` should be a list")
|
||||
kbs = KnowledgebaseService.get_by_ids(kb_ids)
|
||||
embd_nms = list(set([kb.embd_id for kb in kbs]))
|
||||
if len(embd_nms) != 1:
|
||||
return get_result(
|
||||
retmsg='Knowledge bases use different embedding models or does not exist."',
|
||||
retcode=RetCode.AUTHENTICATION_ERROR)
|
||||
if isinstance(kb_ids, str): kb_ids = [kb_ids]
|
||||
for id in kb_ids:
|
||||
if not KnowledgebaseService.query(id=id,tenant_id=tenant_id):
|
||||
return get_error_data_result(f"You don't own the dataset {id}.")
|
||||
embd_nms = list(set([kb.embd_id for kb in kbs]))
|
||||
if len(embd_nms) != 1:
|
||||
return get_result(
|
||||
retmsg='Datasets use different embedding models."',
|
||||
retcode=RetCode.AUTHENTICATION_ERROR)
|
||||
if "question" not in req:
|
||||
return get_error_data_result("`question` is required.")
|
||||
page = int(req.get("offset", 1))
|
||||
size = int(req.get("limit", 1024))
|
||||
question = req["question"]
|
||||
doc_ids = req.get("documents", [])
|
||||
if not isinstance(req.get("documents"),list):
|
||||
doc_ids = req.get("document_ids", [])
|
||||
if not isinstance(doc_ids,list):
|
||||
return get_error_data_result("`documents` should be a list")
|
||||
doc_ids_list=KnowledgebaseService.list_documents_by_ids(kb_ids)
|
||||
for doc_id in doc_ids:
|
||||
if doc_id not in doc_ids_list:
|
||||
return get_error_data_result(f"You don't own the document {doc_id}")
|
||||
return get_error_data_result(f"The datasets don't own the document {doc_id}")
|
||||
similarity_threshold = float(req.get("similarity_threshold", 0.2))
|
||||
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
||||
top = int(req.get("top_k", 1024))
|
||||
|
@ -9,7 +9,7 @@ class Chat(Base):
|
||||
self.id = ""
|
||||
self.name = "assistant"
|
||||
self.avatar = "path/to/avatar"
|
||||
self.datasets = ["kb1"]
|
||||
self.dataset_ids = ["kb1"]
|
||||
self.llm = Chat.LLM(rag, {})
|
||||
self.prompt = Chat.Prompt(rag, {})
|
||||
super().__init__(rag, res_dict)
|
||||
|
@ -64,8 +64,8 @@ class RAGFlow:
|
||||
return DataSet(self, res["data"])
|
||||
raise Exception(res["message"])
|
||||
|
||||
def delete_datasets(self, ids: List[str] = None, names: List[str] = None):
|
||||
res = self.delete("/dataset",{"ids": ids, "names": names})
|
||||
def delete_datasets(self, ids: List[str]):
|
||||
res = self.delete("/dataset",{"ids": ids})
|
||||
res=res.json()
|
||||
if res.get("code") != 0:
|
||||
raise Exception(res["message"])
|
||||
@ -89,11 +89,11 @@ class RAGFlow:
|
||||
return result_list
|
||||
raise Exception(res["message"])
|
||||
|
||||
def create_chat(self, name: str, avatar: str = "", datasets: List[DataSet] = [],
|
||||
def create_chat(self, name: str, avatar: str = "", dataset_ids: List[str] = [],
|
||||
llm: Chat.LLM = None, prompt: Chat.Prompt = None) -> Chat:
|
||||
dataset_list = []
|
||||
for dataset in datasets:
|
||||
dataset_list.append(dataset.id)
|
||||
for id in dataset_ids:
|
||||
dataset_list.append(id)
|
||||
|
||||
if llm is None:
|
||||
llm = Chat.LLM(self, {"model_name": None,
|
||||
@ -126,7 +126,7 @@ class RAGFlow:
|
||||
|
||||
temp_dict = {"name": name,
|
||||
"avatar": avatar,
|
||||
"datasets": dataset_list,
|
||||
"dataset_ids": dataset_list,
|
||||
"llm": llm.to_json(),
|
||||
"prompt": prompt.to_json()}
|
||||
res = self.post("/chat", temp_dict)
|
||||
@ -154,7 +154,9 @@ class RAGFlow:
|
||||
raise Exception(res["message"])
|
||||
|
||||
|
||||
def retrieve(self, datasets,documents,question="", offset=1, limit=1024, similarity_threshold=0.2,vector_similarity_weight=0.3,top_k=1024,rerank_id:str=None,keyword:bool=False,):
|
||||
def retrieve(self, dataset_ids, document_ids=None, question="", offset=1, limit=1024, similarity_threshold=0.2, vector_similarity_weight=0.3, top_k=1024, rerank_id:str=None, keyword:bool=False, ):
|
||||
if document_ids is None:
|
||||
document_ids = []
|
||||
data_json ={
|
||||
"offset": offset,
|
||||
"limit": limit,
|
||||
@ -164,10 +166,9 @@ class RAGFlow:
|
||||
"rerank_id": rerank_id,
|
||||
"keyword": keyword,
|
||||
"question": question,
|
||||
"datasets": datasets,
|
||||
"documents": documents
|
||||
"datasets": dataset_ids,
|
||||
"documents": document_ids
|
||||
}
|
||||
|
||||
# Send a POST request to the backend service (using requests library as an example, actual implementation may vary)
|
||||
res = self.post(f'/retrieval',json=data_json)
|
||||
res = res.json()
|
||||
|
@ -1,5 +1,4 @@
|
||||
from ragflow import RAGFlow, Chat
|
||||
import time
|
||||
HOST_ADDRESS = 'http://127.0.0.1:9380'
|
||||
|
||||
def test_create_chat_with_name(get_api_key_fixture):
|
||||
@ -12,13 +11,10 @@ def test_create_chat_with_name(get_api_key_fixture):
|
||||
document = {"displayed_name":displayed_name,"blob":blob}
|
||||
documents = []
|
||||
documents.append(document)
|
||||
doc_ids = []
|
||||
docs= kb.upload_documents(documents)
|
||||
for doc in docs:
|
||||
doc_ids.append(doc.id)
|
||||
kb.async_parse_documents(doc_ids)
|
||||
time.sleep(60)
|
||||
rag.create_chat("test_create", datasets=[kb])
|
||||
doc.add_chunk("This is a test to add chunk")
|
||||
rag.create_chat("test_create", dataset_ids=[kb.id])
|
||||
|
||||
|
||||
def test_update_chat_with_name(get_api_key_fixture):
|
||||
@ -31,13 +27,10 @@ def test_update_chat_with_name(get_api_key_fixture):
|
||||
document = {"displayed_name": displayed_name, "blob": blob}
|
||||
documents = []
|
||||
documents.append(document)
|
||||
doc_ids = []
|
||||
docs = kb.upload_documents(documents)
|
||||
for doc in docs:
|
||||
doc_ids.append(doc.id)
|
||||
kb.async_parse_documents(doc_ids)
|
||||
time.sleep(60)
|
||||
chat = rag.create_chat("test_update", datasets=[kb])
|
||||
doc.add_chunk("This is a test to add chunk")
|
||||
chat = rag.create_chat("test_update", dataset_ids=[kb.id])
|
||||
chat.update({"name": "new_chat"})
|
||||
|
||||
|
||||
@ -51,17 +44,27 @@ def test_delete_chats_with_success(get_api_key_fixture):
|
||||
document = {"displayed_name": displayed_name, "blob": blob}
|
||||
documents = []
|
||||
documents.append(document)
|
||||
doc_ids = []
|
||||
docs = kb.upload_documents(documents)
|
||||
for doc in docs:
|
||||
doc_ids.append(doc.id)
|
||||
kb.async_parse_documents(doc_ids)
|
||||
time.sleep(60)
|
||||
chat = rag.create_chat("test_delete", datasets=[kb])
|
||||
doc.add_chunk("This is a test to add chunk")
|
||||
chat = rag.create_chat("test_delete", dataset_ids=[kb.id])
|
||||
rag.delete_chats(ids=[chat.id])
|
||||
|
||||
def test_list_chats_with_success(get_api_key_fixture):
|
||||
API_KEY = get_api_key_fixture
|
||||
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
||||
kb = rag.create_dataset(name="test_delete_chat")
|
||||
displayed_name = "ragflow.txt"
|
||||
with open("./ragflow.txt", "rb") as file:
|
||||
blob = file.read()
|
||||
document = {"displayed_name": displayed_name, "blob": blob}
|
||||
documents = []
|
||||
documents.append(document)
|
||||
docs = kb.upload_documents(documents)
|
||||
for doc in docs:
|
||||
doc.add_chunk("This is a test to add chunk")
|
||||
rag.create_chat("test_list_1", dataset_ids=[kb.id])
|
||||
rag.create_chat("test_list_2", dataset_ids=[kb.id])
|
||||
rag.list_chats()
|
||||
|
||||
|
||||
|
@ -10,16 +10,13 @@ def test_create_session_with_success(get_api_key_fixture):
|
||||
displayed_name = "ragflow.txt"
|
||||
with open("./ragflow.txt", "rb") as file:
|
||||
blob = file.read()
|
||||
document = {"displayed_name": displayed_name, "blob": blob}
|
||||
document = {"displayed_name":displayed_name,"blob":blob}
|
||||
documents = []
|
||||
documents.append(document)
|
||||
doc_ids = []
|
||||
docs = kb.upload_documents(documents)
|
||||
docs= kb.upload_documents(documents)
|
||||
for doc in docs:
|
||||
doc_ids.append(doc.id)
|
||||
kb.async_parse_documents(doc_ids)
|
||||
time.sleep(60)
|
||||
assistant = rag.create_chat(name="test_create_session", datasets=[kb])
|
||||
doc.add_chunk("This is a test to add chunk")
|
||||
assistant=rag.create_chat("test_create", dataset_ids=[kb.id])
|
||||
assistant.create_session()
|
||||
|
||||
|
||||
@ -30,16 +27,13 @@ def test_create_conversation_with_success(get_api_key_fixture):
|
||||
displayed_name = "ragflow.txt"
|
||||
with open("./ragflow.txt","rb") as file:
|
||||
blob = file.read()
|
||||
document = {"displayed_name":displayed_name,"blob":blob}
|
||||
document = {"displayed_name": displayed_name, "blob": blob}
|
||||
documents = []
|
||||
documents.append(document)
|
||||
doc_ids = []
|
||||
docs= kb.upload_documents(documents)
|
||||
docs = kb.upload_documents(documents)
|
||||
for doc in docs:
|
||||
doc_ids.append(doc.id)
|
||||
kb.async_parse_documents(doc_ids)
|
||||
time.sleep(60)
|
||||
assistant = rag.create_chat(name="test_create_conversation", datasets=[kb])
|
||||
doc.add_chunk("This is a test to add chunk")
|
||||
assistant = rag.create_chat("test_create", dataset_ids=[kb.id])
|
||||
session = assistant.create_session()
|
||||
question = "What is AI"
|
||||
for ans in session.ask(question, stream=True):
|
||||
@ -57,13 +51,10 @@ def test_delete_sessions_with_success(get_api_key_fixture):
|
||||
document = {"displayed_name":displayed_name,"blob":blob}
|
||||
documents = []
|
||||
documents.append(document)
|
||||
doc_ids = []
|
||||
docs= kb.upload_documents(documents)
|
||||
for doc in docs:
|
||||
doc_ids.append(doc.id)
|
||||
kb.async_parse_documents(doc_ids)
|
||||
time.sleep(60)
|
||||
assistant = rag.create_chat(name="test_delete_session", datasets=[kb])
|
||||
doc.add_chunk("This is a test to add chunk")
|
||||
assistant=rag.create_chat("test_create", dataset_ids=[kb.id])
|
||||
session = assistant.create_session()
|
||||
assistant.delete_sessions(ids=[session.id])
|
||||
|
||||
@ -74,16 +65,13 @@ def test_update_session_with_name(get_api_key_fixture):
|
||||
displayed_name = "ragflow.txt"
|
||||
with open("./ragflow.txt","rb") as file:
|
||||
blob = file.read()
|
||||
document = {"displayed_name":displayed_name,"blob":blob}
|
||||
document = {"displayed_name": displayed_name, "blob": blob}
|
||||
documents = []
|
||||
documents.append(document)
|
||||
doc_ids = []
|
||||
docs= kb.upload_documents(documents)
|
||||
docs = kb.upload_documents(documents)
|
||||
for doc in docs:
|
||||
doc_ids.append(doc.id)
|
||||
kb.async_parse_documents(doc_ids)
|
||||
time.sleep(60)
|
||||
assistant = rag.create_chat(name="test_update_session", datasets=[kb])
|
||||
doc.add_chunk("This is a test to add chunk")
|
||||
assistant = rag.create_chat("test_create", dataset_ids=[kb.id])
|
||||
session = assistant.create_session(name="old session")
|
||||
session.update({"name": "new session"})
|
||||
|
||||
@ -98,13 +86,10 @@ def test_list_sessions_with_success(get_api_key_fixture):
|
||||
document = {"displayed_name":displayed_name,"blob":blob}
|
||||
documents = []
|
||||
documents.append(document)
|
||||
doc_ids = []
|
||||
docs= kb.upload_documents(documents)
|
||||
for doc in docs:
|
||||
doc_ids.append(doc.id)
|
||||
kb.async_parse_documents(doc_ids)
|
||||
time.sleep(60)
|
||||
assistant = rag.create_chat(name="test_list_session", datasets=[kb])
|
||||
doc.add_chunk("This is a test to add chunk")
|
||||
assistant=rag.create_chat("test_create", dataset_ids=[kb.id])
|
||||
assistant.create_session("test_1")
|
||||
assistant.create_session("test_2")
|
||||
assistant.list_sessions()
|
Loading…
x
Reference in New Issue
Block a user