Fix raptor issue (#3737)

### What problem does this PR solve?

#3732

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
This commit is contained in:
Kevin Hu 2024-11-29 11:55:41 +08:00 committed by GitHub
parent a0c0a957b4
commit 27cd765d6f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 18 additions and 14 deletions

View File

@ -33,7 +33,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
self._prompt = prompt self._prompt = prompt
self._max_token = max_token self._max_token = max_token
def _get_optimal_clusters(self, embeddings: np.ndarray, random_state:int): def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int):
max_clusters = min(self._max_cluster, len(embeddings)) max_clusters = min(self._max_cluster, len(embeddings))
n_clusters = np.arange(1, max_clusters) n_clusters = np.arange(1, max_clusters)
bics = [] bics = []
@ -44,7 +44,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
optimal_clusters = n_clusters[np.argmin(bics)] optimal_clusters = n_clusters[np.argmin(bics)]
return optimal_clusters return optimal_clusters
def __call__(self, chunks: tuple[str, np.ndarray], random_state, callback=None): def __call__(self, chunks, random_state, callback=None):
layers = [(0, len(chunks))] layers = [(0, len(chunks))]
start, end = 0, len(chunks) start, end = 0, len(chunks)
if len(chunks) <= 1: return if len(chunks) <= 1: return
@ -54,13 +54,15 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
nonlocal chunks nonlocal chunks
try: try:
texts = [chunks[i][0] for i in ck_idx] texts = [chunks[i][0] for i in ck_idx]
len_per_chunk = int((self._llm_model.max_length - self._max_token)/len(texts)) len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts))
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts]) cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
cnt = self._llm_model.chat("You're a helpful assistant.", cnt = self._llm_model.chat("You're a helpful assistant.",
[{"role": "user", "content": self._prompt.format(cluster_content=cluster_content)}], [{"role": "user",
{"temperature": 0.3, "max_tokens": self._max_token} "content": self._prompt.format(cluster_content=cluster_content)}],
) {"temperature": 0.3, "max_tokens": self._max_token}
cnt = re.sub("(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)", "", cnt) )
cnt = re.sub("(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)", "",
cnt)
logging.debug(f"SUM: {cnt}") logging.debug(f"SUM: {cnt}")
embds, _ = self._embd_model.encode([cnt]) embds, _ = self._embd_model.encode([cnt])
with lock: with lock:
@ -74,10 +76,10 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
while end - start > 1: while end - start > 1:
embeddings = [embd for _, embd in chunks[start: end]] embeddings = [embd for _, embd in chunks[start: end]]
if len(embeddings) == 2: if len(embeddings) == 2:
summarize([start, start+1], Lock()) summarize([start, start + 1], Lock())
if callback: if callback:
callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end)) callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
labels.extend([0,0]) labels.extend([0, 0])
layers.append((end, len(chunks))) layers.append((end, len(chunks)))
start = end start = end
end = len(chunks) end = len(chunks)
@ -85,7 +87,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
n_neighbors = int((len(embeddings) - 1) ** 0.8) n_neighbors = int((len(embeddings) - 1) ** 0.8)
reduced_embeddings = umap.UMAP( reduced_embeddings = umap.UMAP(
n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings)-2), metric="cosine" n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings) - 2), metric="cosine"
).fit_transform(embeddings) ).fit_transform(embeddings)
n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state) n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
if n_clusters == 1: if n_clusters == 1:
@ -100,7 +102,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
with ThreadPoolExecutor(max_workers=12) as executor: with ThreadPoolExecutor(max_workers=12) as executor:
threads = [] threads = []
for c in range(n_clusters): for c in range(n_clusters):
ck_idx = [i+start for i in range(len(lbls)) if lbls[i] == c] ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c]
threads.append(executor.submit(summarize, ck_idx, lock)) threads.append(executor.submit(summarize, ck_idx, lock))
wait(threads, return_when=ALL_COMPLETED) wait(threads, return_when=ALL_COMPLETED)
logging.debug(str([t.result() for t in threads])) logging.debug(str([t.result() for t in threads]))
@ -109,7 +111,9 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
labels.extend(lbls) labels.extend(lbls)
layers.append((end, len(chunks))) layers.append((end, len(chunks)))
if callback: if callback:
callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end)) callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
start = end start = end
end = len(chunks) end = len(chunks)
return chunks

View File

@ -344,7 +344,7 @@ def run_raptor(row, chat_mdl, embd_mdl, callback=None):
row["parser_config"]["raptor"]["threshold"] row["parser_config"]["raptor"]["threshold"]
) )
original_length = len(chunks) original_length = len(chunks)
raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback) chunks = raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
doc = { doc = {
"doc_id": row["doc_id"], "doc_id": row["doc_id"],
"kb_id": [str(row["kb_id"])], "kb_id": [str(row["kb_id"])],