mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-12 06:28:58 +08:00
Fix raptor issue (#3737)
### What problem does this PR solve? #3732 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
This commit is contained in:
parent
a0c0a957b4
commit
27cd765d6f
@ -33,7 +33,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
||||
self._prompt = prompt
|
||||
self._max_token = max_token
|
||||
|
||||
def _get_optimal_clusters(self, embeddings: np.ndarray, random_state:int):
|
||||
def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int):
|
||||
max_clusters = min(self._max_cluster, len(embeddings))
|
||||
n_clusters = np.arange(1, max_clusters)
|
||||
bics = []
|
||||
@ -44,7 +44,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
||||
optimal_clusters = n_clusters[np.argmin(bics)]
|
||||
return optimal_clusters
|
||||
|
||||
def __call__(self, chunks: tuple[str, np.ndarray], random_state, callback=None):
|
||||
def __call__(self, chunks, random_state, callback=None):
|
||||
layers = [(0, len(chunks))]
|
||||
start, end = 0, len(chunks)
|
||||
if len(chunks) <= 1: return
|
||||
@ -54,13 +54,15 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
||||
nonlocal chunks
|
||||
try:
|
||||
texts = [chunks[i][0] for i in ck_idx]
|
||||
len_per_chunk = int((self._llm_model.max_length - self._max_token)/len(texts))
|
||||
len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts))
|
||||
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
|
||||
cnt = self._llm_model.chat("You're a helpful assistant.",
|
||||
[{"role": "user", "content": self._prompt.format(cluster_content=cluster_content)}],
|
||||
{"temperature": 0.3, "max_tokens": self._max_token}
|
||||
)
|
||||
cnt = re.sub("(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)", "", cnt)
|
||||
[{"role": "user",
|
||||
"content": self._prompt.format(cluster_content=cluster_content)}],
|
||||
{"temperature": 0.3, "max_tokens": self._max_token}
|
||||
)
|
||||
cnt = re.sub("(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)", "",
|
||||
cnt)
|
||||
logging.debug(f"SUM: {cnt}")
|
||||
embds, _ = self._embd_model.encode([cnt])
|
||||
with lock:
|
||||
@ -74,10 +76,10 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
||||
while end - start > 1:
|
||||
embeddings = [embd for _, embd in chunks[start: end]]
|
||||
if len(embeddings) == 2:
|
||||
summarize([start, start+1], Lock())
|
||||
summarize([start, start + 1], Lock())
|
||||
if callback:
|
||||
callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end))
|
||||
labels.extend([0,0])
|
||||
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
|
||||
labels.extend([0, 0])
|
||||
layers.append((end, len(chunks)))
|
||||
start = end
|
||||
end = len(chunks)
|
||||
@ -85,7 +87,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
||||
|
||||
n_neighbors = int((len(embeddings) - 1) ** 0.8)
|
||||
reduced_embeddings = umap.UMAP(
|
||||
n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings)-2), metric="cosine"
|
||||
n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings) - 2), metric="cosine"
|
||||
).fit_transform(embeddings)
|
||||
n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
|
||||
if n_clusters == 1:
|
||||
@ -100,7 +102,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
||||
with ThreadPoolExecutor(max_workers=12) as executor:
|
||||
threads = []
|
||||
for c in range(n_clusters):
|
||||
ck_idx = [i+start for i in range(len(lbls)) if lbls[i] == c]
|
||||
ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c]
|
||||
threads.append(executor.submit(summarize, ck_idx, lock))
|
||||
wait(threads, return_when=ALL_COMPLETED)
|
||||
logging.debug(str([t.result() for t in threads]))
|
||||
@ -109,7 +111,9 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
||||
labels.extend(lbls)
|
||||
layers.append((end, len(chunks)))
|
||||
if callback:
|
||||
callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end))
|
||||
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
|
||||
start = end
|
||||
end = len(chunks)
|
||||
|
||||
return chunks
|
||||
|
||||
|
@ -344,7 +344,7 @@ def run_raptor(row, chat_mdl, embd_mdl, callback=None):
|
||||
row["parser_config"]["raptor"]["threshold"]
|
||||
)
|
||||
original_length = len(chunks)
|
||||
raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
|
||||
chunks = raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
|
||||
doc = {
|
||||
"doc_id": row["doc_id"],
|
||||
"kb_id": [str(row["kb_id"])],
|
||||
|
Loading…
x
Reference in New Issue
Block a user