mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-10 19:18:57 +08:00
Feat: support cross-lang search. (#7557)
### What problem does this PR solve? #7376 #4503 #5710 #7470 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
parent
2fe332d01d
commit
2ccec93d71
@ -22,7 +22,7 @@ from flask_login import login_required, current_user
|
||||
from rag.app.qa import rmPrefix, beAdoc
|
||||
from rag.app.tag import label_question
|
||||
from rag.nlp import search, rag_tokenizer
|
||||
from rag.prompts import keyword_extraction
|
||||
from rag.prompts import keyword_extraction, cross_languages
|
||||
from rag.settings import PAGERANK_FLD
|
||||
from rag.utils import rmSpace
|
||||
from api.db import LLMType, ParserType
|
||||
@ -275,6 +275,7 @@ def retrieval_test():
|
||||
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
||||
use_kg = req.get("use_kg", False)
|
||||
top = int(req.get("top_k", 1024))
|
||||
langs = req.get("cross_languages", [])
|
||||
tenant_ids = []
|
||||
|
||||
try:
|
||||
@ -294,6 +295,9 @@ def retrieval_test():
|
||||
if not e:
|
||||
return get_data_error_result(message="Knowledgebase not found!")
|
||||
|
||||
if langs:
|
||||
question = cross_languages(kb.tenant_id, None, question, langs)
|
||||
|
||||
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
||||
|
||||
rerank_mdl = None
|
||||
|
@ -36,7 +36,8 @@ from api.utils import current_timestamp, datetime_format
|
||||
from rag.app.resume import forbidden_select_fields4resume
|
||||
from rag.app.tag import label_question
|
||||
from rag.nlp.search import index_name
|
||||
from rag.prompts import chunks_format, citation_prompt, full_question, kb_prompt, keyword_extraction, llm_id2llm_type, message_fit_in
|
||||
from rag.prompts import chunks_format, citation_prompt, full_question, kb_prompt, keyword_extraction, llm_id2llm_type, message_fit_in, \
|
||||
cross_languages
|
||||
from rag.utils import num_tokens_from_string, rmSpace
|
||||
from rag.utils.tavily_conn import Tavily
|
||||
|
||||
@ -214,6 +215,9 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
else:
|
||||
questions = questions[-1:]
|
||||
|
||||
if prompt_config.get("cross_languages"):
|
||||
questions = [cross_languages(dialog.tenant_id, dialog.llm_id, questions[0], prompt_config["cross_languages"])]
|
||||
|
||||
refine_question_ts = timer()
|
||||
|
||||
rerank_mdl = None
|
||||
|
@ -131,7 +131,7 @@ class DocumentService(CommonService):
|
||||
if types:
|
||||
query = query.where(cls.model.type.in_(types))
|
||||
|
||||
return query.scalar() or 0
|
||||
return int(query.scalar()) or 0
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
|
@ -306,6 +306,60 @@ Output: What's the weather in Rochester on {tomorrow}?
|
||||
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
|
||||
return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"]
|
||||
|
||||
def cross_languages(tenant_id, llm_id, query, languages=[]):
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
|
||||
if llm_id and llm_id2llm_type(llm_id) == "image2text":
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
|
||||
else:
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
|
||||
|
||||
sys_prompt = """
|
||||
Act as a streamlined multilingual translator. Strictly output translations separated by ### without any explanations or formatting. Follow these rules:
|
||||
|
||||
1. Accept batch translation requests in format:
|
||||
[source text]
|
||||
===
|
||||
[target languages separated by commas]
|
||||
|
||||
2. Always maintain:
|
||||
- Original formatting (tables/lists/spacing)
|
||||
- Technical terminology accuracy
|
||||
- Cultural context appropriateness
|
||||
|
||||
3. Output format:
|
||||
[language1 translation]
|
||||
###
|
||||
[language1 translation]
|
||||
|
||||
**Examples:**
|
||||
Input:
|
||||
Hello World! Let's discuss AI safety.
|
||||
===
|
||||
Chinese, French, Jappanese
|
||||
|
||||
Output:
|
||||
你好世界!让我们讨论人工智能安全问题。
|
||||
###
|
||||
Bonjour le monde ! Parlons de la sécurité de l'IA.
|
||||
###
|
||||
こんにちは世界!AIの安全性について話し合いましょう。
|
||||
"""
|
||||
user_prompt=f"""
|
||||
Input:
|
||||
{query}
|
||||
===
|
||||
{', '.join(languages)}
|
||||
|
||||
Output:
|
||||
"""
|
||||
|
||||
ans = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {"temperature": 0.2})
|
||||
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
|
||||
if ans.find("**ERROR**") >= 0:
|
||||
return query
|
||||
return "\n".join([a for a in re.sub(r"(^Output:|\n+)", "", ans, flags=re.DOTALL).split("===") if a.strip()])
|
||||
|
||||
|
||||
def content_tagging(chat_mdl, content, all_tags, examples, topn=3):
|
||||
prompt = f"""
|
||||
|
Loading…
x
Reference in New Issue
Block a user