mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-12 02:29:03 +08:00
add search TAB backend api (#2375)
### What problem does this PR solve? #2247 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
parent
8052cbc70e
commit
333608a1d4
@ -58,7 +58,7 @@ def list_chunk():
|
||||
}
|
||||
if "available_int" in req:
|
||||
query["available_int"] = int(req["available_int"])
|
||||
sres = retrievaler.search(query, search.index_name(tenant_id))
|
||||
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
|
||||
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
|
||||
for id in sres.ids:
|
||||
d = {
|
||||
@ -259,12 +259,25 @@ def retrieval_test():
|
||||
size = int(req.get("size", 30))
|
||||
question = req["question"]
|
||||
kb_id = req["kb_id"]
|
||||
if isinstance(kb_id, str): kb_id = [kb_id]
|
||||
doc_ids = req.get("doc_ids", [])
|
||||
similarity_threshold = float(req.get("similarity_threshold", 0.2))
|
||||
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
||||
top = int(req.get("top_k", 1024))
|
||||
|
||||
try:
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_id)
|
||||
tenants = UserTenantService.query(user_id=current_user.id)
|
||||
for kid in kb_id:
|
||||
for tenant in tenants:
|
||||
if KnowledgebaseService.query(
|
||||
tenant_id=tenant.tenant_id, id=kid):
|
||||
break
|
||||
else:
|
||||
return get_json_result(
|
||||
data=False, retmsg=f'Only owner of knowledgebase authorized for this operation.',
|
||||
retcode=RetCode.OPERATING_ERROR)
|
||||
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_id[0])
|
||||
if not e:
|
||||
return get_data_error_result(retmsg="Knowledgebase not found!")
|
||||
|
||||
@ -281,9 +294,9 @@ def retrieval_test():
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler
|
||||
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size,
|
||||
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, kb_id, page, size,
|
||||
similarity_threshold, vector_similarity_weight, top,
|
||||
doc_ids, rerank_mdl=rerank_mdl)
|
||||
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"))
|
||||
for c in ranks["chunks"]:
|
||||
if "vector" in c:
|
||||
del c["vector"]
|
||||
|
@ -14,19 +14,22 @@
|
||||
# limitations under the License.
|
||||
#
|
||||
import json
|
||||
import re
|
||||
from copy import deepcopy
|
||||
|
||||
from db.services.user_service import UserTenantService
|
||||
from api.db.services.user_service import UserTenantService
|
||||
from flask import request, Response
|
||||
from flask_login import login_required, current_user
|
||||
|
||||
from api.db import LLMType
|
||||
from api.db.services.dialog_service import DialogService, ConversationService, chat
|
||||
from api.db.services.llm_service import LLMBundle, TenantService
|
||||
from api.settings import RetCode
|
||||
from api.db.services.dialog_service import DialogService, ConversationService, chat, ask
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMBundle, TenantService, TenantLLMService
|
||||
from api.settings import RetCode, retrievaler
|
||||
from api.utils import get_uuid
|
||||
from api.utils.api_utils import get_json_result
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from graphrag.mind_map_extractor import MindMapExtractor
|
||||
|
||||
|
||||
@manager.route('/set', methods=['POST'])
|
||||
@ -286,3 +289,86 @@ def thumbup():
|
||||
|
||||
ConversationService.update_by_id(conv["id"], conv)
|
||||
return get_json_result(data=conv)
|
||||
|
||||
|
||||
@manager.route('/ask', methods=['POST'])
|
||||
@login_required
|
||||
@validate_request("question", "kb_ids")
|
||||
def ask_about():
|
||||
req = request.json
|
||||
uid = current_user.id
|
||||
def stream():
|
||||
nonlocal req, uid
|
||||
try:
|
||||
for ans in ask(req["question"], req["kb_ids"], uid):
|
||||
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
||||
except Exception as e:
|
||||
yield "data:" + json.dumps({"retcode": 500, "retmsg": str(e),
|
||||
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
||||
ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps({"retcode": 0, "retmsg": "", "data": True}, ensure_ascii=False) + "\n\n"
|
||||
|
||||
resp = Response(stream(), mimetype="text/event-stream")
|
||||
resp.headers.add_header("Cache-control", "no-cache")
|
||||
resp.headers.add_header("Connection", "keep-alive")
|
||||
resp.headers.add_header("X-Accel-Buffering", "no")
|
||||
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
||||
return resp
|
||||
|
||||
|
||||
@manager.route('/mindmap', methods=['POST'])
|
||||
@login_required
|
||||
@validate_request("question", "kb_ids")
|
||||
def mindmap():
|
||||
req = request.json
|
||||
kb_ids = req["kb_ids"]
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
|
||||
if not e:
|
||||
return get_data_error_result(retmsg="Knowledgebase not found!")
|
||||
|
||||
embd_mdl = TenantLLMService.model_instance(
|
||||
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
||||
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
|
||||
ranks = retrievaler.retrieval(req["question"], embd_mdl, kb.tenant_id, kb_ids, 1, 12,
|
||||
0.3, 0.3, aggs=False)
|
||||
mindmap = MindMapExtractor(chat_mdl)
|
||||
mind_map = mindmap([c["content_with_weight"] for c in ranks["chunks"]]).output
|
||||
return get_json_result(data=mind_map)
|
||||
|
||||
|
||||
@manager.route('/related_questions', methods=['POST'])
|
||||
@login_required
|
||||
@validate_request("question")
|
||||
def related_questions():
|
||||
req = request.json
|
||||
question = req["question"]
|
||||
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
|
||||
prompt = """
|
||||
Objective: To generate search terms related to the user's search keywords, helping users find more valuable information.
|
||||
Instructions:
|
||||
- Based on the keywords provided by the user, generate 5-10 related search terms.
|
||||
- Each search term should be directly or indirectly related to the keyword, guiding the user to find more valuable information.
|
||||
- Use common, general terms as much as possible, avoiding obscure words or technical jargon.
|
||||
- Keep the term length between 2-4 words, concise and clear.
|
||||
- DO NOT translate, use the language of the original keywords.
|
||||
|
||||
### Example:
|
||||
Keywords: Chinese football
|
||||
Related search terms:
|
||||
1. Current status of Chinese football
|
||||
2. Reform of Chinese football
|
||||
3. Youth training of Chinese football
|
||||
4. Chinese football in the Asian Cup
|
||||
5. Chinese football in the World Cup
|
||||
|
||||
Reason:
|
||||
- When searching, users often only use one or two keywords, making it difficult to fully express their information needs.
|
||||
- Generating related search terms can help users dig deeper into relevant information and improve search efficiency.
|
||||
- At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
|
||||
|
||||
"""
|
||||
ans = chat_mdl.chat(prompt, [{"role": "user", "content": f"""
|
||||
Keywords: {question}
|
||||
Related search terms:
|
||||
"""}], {"temperature": 0.9})
|
||||
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
|
||||
|
@ -210,7 +210,7 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
|
||||
done_tm = timer()
|
||||
prompt += "\n### Elapsed\n - Retrieval: %.1f ms\n - LLM: %.1f ms"%((retrieval_tm-st)*1000, (done_tm-st)*1000)
|
||||
return {"answer": answer, "reference": refs, "prompt": re.sub(r"\n", "<br/>", prompt)}
|
||||
return {"answer": answer, "reference": refs, "prompt": prompt}
|
||||
|
||||
if stream:
|
||||
last_ans = ""
|
||||
|
@ -190,7 +190,7 @@ class LLMBundle(object):
|
||||
tenant_id, llm_type, llm_name, lang=lang)
|
||||
assert self.mdl, "Can't find mole for {}/{}/{}".format(
|
||||
tenant_id, llm_type, llm_name)
|
||||
self.max_length = 512
|
||||
self.max_length = 8192
|
||||
for lm in LLMService.query(llm_name=llm_name):
|
||||
self.max_length = lm.max_tokens
|
||||
break
|
||||
|
@ -23,7 +23,7 @@ from rag.nlp.search import Dealer
|
||||
|
||||
|
||||
class KGSearch(Dealer):
|
||||
def search(self, req, idxnm, emb_mdl=None):
|
||||
def search(self, req, idxnm, emb_mdl=None, highlight=False):
|
||||
def merge_into_first(sres, title=""):
|
||||
df,texts = [],[]
|
||||
for d in sres["hits"]["hits"]:
|
||||
|
@ -79,9 +79,9 @@ class Dealer:
|
||||
Q("bool", must_not=Q("range", available_int={"lt": 1})))
|
||||
return bqry
|
||||
|
||||
def search(self, req, idxnm, emb_mdl=None):
|
||||
def search(self, req, idxnm, emb_mdl=None, highlight=False):
|
||||
qst = req.get("question", "")
|
||||
bqry, keywords = self.qryr.question(qst)
|
||||
bqry, keywords = self.qryr.question(qst, min_match="30%")
|
||||
bqry = self._add_filters(bqry, req)
|
||||
bqry.boost = 0.05
|
||||
|
||||
@ -130,7 +130,7 @@ class Dealer:
|
||||
qst, emb_mdl, req.get(
|
||||
"similarity", 0.1), topk)
|
||||
s["knn"]["filter"] = bqry.to_dict()
|
||||
if "highlight" in s:
|
||||
if not highlight and "highlight" in s:
|
||||
del s["highlight"]
|
||||
q_vec = s["knn"]["query_vector"]
|
||||
es_logger.info("【Q】: {}".format(json.dumps(s)))
|
||||
@ -356,7 +356,7 @@ class Dealer:
|
||||
rag_tokenizer.tokenize(inst).split(" "))
|
||||
|
||||
def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
|
||||
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True, rerank_mdl=None):
|
||||
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True, rerank_mdl=None, highlight=False):
|
||||
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
|
||||
if not question:
|
||||
return ranks
|
||||
@ -364,7 +364,7 @@ class Dealer:
|
||||
"question": question, "vector": True, "topk": top,
|
||||
"similarity": similarity_threshold,
|
||||
"available_int": 1}
|
||||
sres = self.search(req, index_name(tenant_id), embd_mdl)
|
||||
sres = self.search(req, index_name(tenant_id), embd_mdl, highlight)
|
||||
|
||||
if rerank_mdl:
|
||||
sim, tsim, vsim = self.rerank_by_model(rerank_mdl,
|
||||
@ -405,6 +405,8 @@ class Dealer:
|
||||
"vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim))),
|
||||
"positions": sres.field[id].get("position_int", "").split("\t")
|
||||
}
|
||||
if highlight:
|
||||
d["highlight"] = rmSpace(sres.highlight[id])
|
||||
if len(d["positions"]) % 5 == 0:
|
||||
poss = []
|
||||
for i in range(0, len(d["positions"]), 5):
|
||||
|
Loading…
x
Reference in New Issue
Block a user