Add docx support for manual parser (#1227)

### What problem does this PR solve?

Add docx support for manual parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Zhedong Cen 2024-06-20 17:03:02 +08:00 committed by GitHub
parent fb56a29478
commit 3c1444ab19
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 189 additions and 84 deletions

View File

@ -18,10 +18,13 @@ import copy
import re
from api.db import ParserType
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
from io import BytesIO
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks, docx_question_level
from deepdoc.parser import PdfParser, PlainParser
from rag.utils import num_tokens_from_string
from deepdoc.parser import PdfParser, ExcelParser, DocxParser
from docx import Document
from PIL import Image
class Pdf(PdfParser):
def __init__(self):
@ -64,6 +67,98 @@ class Pdf(PdfParser):
return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin))
for i, b in enumerate(self.boxes)], tbls
class Docx(DocxParser):
def __init__(self):
pass
def get_picture(self, document, paragraph):
img = paragraph._element.xpath('.//pic:pic')
if not img:
return None
img = img[0]
embed = img.xpath('.//a:blip/@r:embed')[0]
related_part = document.part.related_parts[embed]
image = related_part.image
image = Image.open(BytesIO(image.blob))
return image
def concat_img(self, img1, img2):
if img1 and not img2:
return img1
if not img1 and img2:
return img2
if not img1 and not img2:
return None
width1, height1 = img1.size
width2, height2 = img2.size
new_width = max(width1, width2)
new_height = height1 + height2
new_image = Image.new('RGB', (new_width, new_height))
new_image.paste(img1, (0, 0))
new_image.paste(img2, (0, height1))
return new_image
def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None):
self.doc = Document(
filename) if not binary else Document(BytesIO(binary))
pn = 0
last_answer, last_image = "", None
question_stack, level_stack = [], []
ti_list = []
for p in self.doc.paragraphs:
if pn > to_page:
break
question_level, p_text = 0, ''
if from_page <= pn < to_page and p.text.strip():
question_level, p_text = docx_question_level(p)
if not question_level or question_level > 6: # not a question
last_answer = f'{last_answer}\n{p_text}'
current_image = self.get_picture(self.doc, p)
last_image = self.concat_img(last_image, current_image)
else: # is a question
if last_answer or last_image:
sum_question = '\n'.join(question_stack)
if sum_question:
ti_list.append((f'{sum_question}\n{last_answer}', last_image))
last_answer, last_image = '', None
i = question_level
while question_stack and i <= level_stack[-1]:
question_stack.pop()
level_stack.pop()
question_stack.append(p_text)
level_stack.append(question_level)
for run in p.runs:
if 'lastRenderedPageBreak' in run._element.xml:
pn += 1
continue
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
pn += 1
if last_answer:
sum_question = '\n'.join(question_stack)
if sum_question:
ti_list.append((f'{sum_question}\n{last_answer}', last_image))
tbls = []
for tb in self.doc.tables:
html= "<table>"
for r in tb.rows:
html += "<tr>"
i = 0
while i < len(r.cells):
span = 1
c = r.cells[i]
for j in range(i+1, len(r.cells)):
if c.text == r.cells[j].text:
span += 1
i = j
i += 1
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
html += "</tr>"
html += "</table>"
tbls.append(((None, html), ""))
return ti_list, tbls
def chunk(filename, binary=None, from_page=0, to_page=100000,
lang="Chinese", callback=None, **kwargs):
@ -71,7 +166,13 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
Only pdf is supported.
"""
pdf_parser = None
doc = {
"docnm_kwd": filename
}
doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
# is it English
eng = lang.lower() == "english" # pdf_parser.is_english
if re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf() if kwargs.get(
"parser_config", {}).get(
@ -80,17 +181,6 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
from_page=from_page, to_page=to_page, callback=callback)
if sections and len(sections[0]) < 3:
sections = [(t, l, [[0] * 5]) for t, l in sections]
else:
raise NotImplementedError("file type not supported yet(pdf supported)")
doc = {
"docnm_kwd": filename
}
doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
# is it English
eng = lang.lower() == "english" # pdf_parser.is_english
# set pivot using the most frequent type of title,
# then merge between 2 pivot
if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1:
@ -154,6 +244,21 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
res = tokenize_table(tbls, doc, eng)
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
return res
if re.search(r"\.docx$", filename, re.IGNORECASE):
docx_parser = Docx()
ti_list, tbls = docx_parser(filename, binary,
from_page=0, to_page=10000, callback=callback)
res = tokenize_table(tbls, doc, eng)
for text, image in ti_list:
d = copy.deepcopy(doc)
d['image'] = image
tokenize(d, text, eng)
res.append(d)
return res
else:
raise NotImplementedError("file type not supported yet(pdf and docx supported)")
if __name__ == "__main__":

View File

@ -16,7 +16,7 @@ from io import BytesIO
from timeit import default_timer as timer
from nltk import word_tokenize
from openpyxl import load_workbook
from rag.nlp import is_english, random_choices, find_codec, qbullets_category, add_positions, has_qbullet
from rag.nlp import is_english, random_choices, find_codec, qbullets_category, add_positions, has_qbullet, docx_question_level
from rag.nlp import rag_tokenizer, tokenize_table
from rag.settings import cron_logger
from deepdoc.parser import PdfParser, ExcelParser, DocxParser
@ -165,7 +165,7 @@ class Docx(DocxParser):
break
question_level, p_text = 0, ''
if from_page <= pn < to_page and p.text.strip():
question_level, p_text = docxQuestionLevel(p)
question_level, p_text = docx_question_level(p)
if not question_level or question_level > 6: # not a question
last_answer = f'{last_answer}\n{p_text}'
current_image = self.get_picture(self.doc, p)
@ -254,12 +254,6 @@ def mdQuestionLevel(s):
match = re.match(r'#*', s)
return (len(match.group(0)), s.lstrip('#').lstrip()) if match else (0, s)
def docxQuestionLevel(p):
if p.style.name.startswith('Heading'):
return int(p.style.name.split(' ')[-1]), re.sub(r"\u3000", " ", p.text).strip()
else:
return 0, re.sub(r"\u3000", " ", p.text).strip()
def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
"""
Excel and csv(txt) format files are supported.

View File

@ -497,3 +497,9 @@ def naive_merge(sections, chunk_token_num=128, delimiter="\n。"):
add_chunk(sec[s: e], pos)
return cks
def docx_question_level(p):
if p.style.name.startswith('Heading'):
return int(p.style.name.split(' ')[-1]), re.sub(r"\u3000", " ", p.text).strip()
else:
return 0, re.sub(r"\u3000", " ", p.text).strip()