mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-12 16:28:59 +08:00
Add docx support for manual parser (#1227)
### What problem does this PR solve? Add docx support for manual parser ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
parent
fb56a29478
commit
3c1444ab19
@ -18,10 +18,13 @@ import copy
|
||||
import re
|
||||
|
||||
from api.db import ParserType
|
||||
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
|
||||
from io import BytesIO
|
||||
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks, docx_question_level
|
||||
from deepdoc.parser import PdfParser, PlainParser
|
||||
from rag.utils import num_tokens_from_string
|
||||
|
||||
from deepdoc.parser import PdfParser, ExcelParser, DocxParser
|
||||
from docx import Document
|
||||
from PIL import Image
|
||||
|
||||
class Pdf(PdfParser):
|
||||
def __init__(self):
|
||||
@ -64,6 +67,98 @@ class Pdf(PdfParser):
|
||||
return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin))
|
||||
for i, b in enumerate(self.boxes)], tbls
|
||||
|
||||
class Docx(DocxParser):
|
||||
def __init__(self):
|
||||
pass
|
||||
def get_picture(self, document, paragraph):
|
||||
img = paragraph._element.xpath('.//pic:pic')
|
||||
if not img:
|
||||
return None
|
||||
img = img[0]
|
||||
embed = img.xpath('.//a:blip/@r:embed')[0]
|
||||
related_part = document.part.related_parts[embed]
|
||||
image = related_part.image
|
||||
image = Image.open(BytesIO(image.blob))
|
||||
return image
|
||||
def concat_img(self, img1, img2):
|
||||
if img1 and not img2:
|
||||
return img1
|
||||
if not img1 and img2:
|
||||
return img2
|
||||
if not img1 and not img2:
|
||||
return None
|
||||
width1, height1 = img1.size
|
||||
width2, height2 = img2.size
|
||||
|
||||
new_width = max(width1, width2)
|
||||
new_height = height1 + height2
|
||||
new_image = Image.new('RGB', (new_width, new_height))
|
||||
|
||||
new_image.paste(img1, (0, 0))
|
||||
new_image.paste(img2, (0, height1))
|
||||
|
||||
return new_image
|
||||
|
||||
def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None):
|
||||
self.doc = Document(
|
||||
filename) if not binary else Document(BytesIO(binary))
|
||||
pn = 0
|
||||
last_answer, last_image = "", None
|
||||
question_stack, level_stack = [], []
|
||||
ti_list = []
|
||||
for p in self.doc.paragraphs:
|
||||
if pn > to_page:
|
||||
break
|
||||
question_level, p_text = 0, ''
|
||||
if from_page <= pn < to_page and p.text.strip():
|
||||
question_level, p_text = docx_question_level(p)
|
||||
if not question_level or question_level > 6: # not a question
|
||||
last_answer = f'{last_answer}\n{p_text}'
|
||||
current_image = self.get_picture(self.doc, p)
|
||||
last_image = self.concat_img(last_image, current_image)
|
||||
else: # is a question
|
||||
if last_answer or last_image:
|
||||
sum_question = '\n'.join(question_stack)
|
||||
if sum_question:
|
||||
ti_list.append((f'{sum_question}\n{last_answer}', last_image))
|
||||
last_answer, last_image = '', None
|
||||
|
||||
i = question_level
|
||||
while question_stack and i <= level_stack[-1]:
|
||||
question_stack.pop()
|
||||
level_stack.pop()
|
||||
question_stack.append(p_text)
|
||||
level_stack.append(question_level)
|
||||
for run in p.runs:
|
||||
if 'lastRenderedPageBreak' in run._element.xml:
|
||||
pn += 1
|
||||
continue
|
||||
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
|
||||
pn += 1
|
||||
if last_answer:
|
||||
sum_question = '\n'.join(question_stack)
|
||||
if sum_question:
|
||||
ti_list.append((f'{sum_question}\n{last_answer}', last_image))
|
||||
|
||||
tbls = []
|
||||
for tb in self.doc.tables:
|
||||
html= "<table>"
|
||||
for r in tb.rows:
|
||||
html += "<tr>"
|
||||
i = 0
|
||||
while i < len(r.cells):
|
||||
span = 1
|
||||
c = r.cells[i]
|
||||
for j in range(i+1, len(r.cells)):
|
||||
if c.text == r.cells[j].text:
|
||||
span += 1
|
||||
i = j
|
||||
i += 1
|
||||
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
|
||||
html += "</tr>"
|
||||
html += "</table>"
|
||||
tbls.append(((None, html), ""))
|
||||
return ti_list, tbls
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
lang="Chinese", callback=None, **kwargs):
|
||||
@ -71,7 +166,13 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
Only pdf is supported.
|
||||
"""
|
||||
pdf_parser = None
|
||||
|
||||
doc = {
|
||||
"docnm_kwd": filename
|
||||
}
|
||||
doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
|
||||
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
|
||||
# is it English
|
||||
eng = lang.lower() == "english" # pdf_parser.is_english
|
||||
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf() if kwargs.get(
|
||||
"parser_config", {}).get(
|
||||
@ -80,80 +181,84 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
from_page=from_page, to_page=to_page, callback=callback)
|
||||
if sections and len(sections[0]) < 3:
|
||||
sections = [(t, l, [[0] * 5]) for t, l in sections]
|
||||
# set pivot using the most frequent type of title,
|
||||
# then merge between 2 pivot
|
||||
if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1:
|
||||
max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
|
||||
most_level = max(0, max_lvl - 1)
|
||||
levels = []
|
||||
for txt, _, _ in sections:
|
||||
for t, lvl in pdf_parser.outlines:
|
||||
tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
|
||||
tks_ = set([txt[i] + txt[i + 1]
|
||||
for i in range(min(len(t), len(txt) - 1))])
|
||||
if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
|
||||
levels.append(lvl)
|
||||
break
|
||||
else:
|
||||
levels.append(max_lvl + 1)
|
||||
|
||||
else:
|
||||
bull = bullets_category([txt for txt, _, _ in sections])
|
||||
most_level, levels = title_frequency(
|
||||
bull, [(txt, l) for txt, l, poss in sections])
|
||||
|
||||
assert len(sections) == len(levels)
|
||||
sec_ids = []
|
||||
sid = 0
|
||||
for i, lvl in enumerate(levels):
|
||||
if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
|
||||
sid += 1
|
||||
sec_ids.append(sid)
|
||||
# print(lvl, self.boxes[i]["text"], most_level, sid)
|
||||
|
||||
sections = [(txt, sec_ids[i], poss)
|
||||
for i, (txt, _, poss) in enumerate(sections)]
|
||||
for (img, rows), poss in tbls:
|
||||
if not rows: continue
|
||||
sections.append((rows if isinstance(rows, str) else rows[0], -1,
|
||||
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
||||
|
||||
def tag(pn, left, right, top, bottom):
|
||||
if pn + left + right + top + bottom == 0:
|
||||
return ""
|
||||
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
|
||||
.format(pn, left, right, top, bottom)
|
||||
|
||||
chunks = []
|
||||
last_sid = -2
|
||||
tk_cnt = 0
|
||||
for txt, sec_id, poss in sorted(sections, key=lambda x: (
|
||||
x[-1][0][0], x[-1][0][3], x[-1][0][1])):
|
||||
poss = "\t".join([tag(*pos) for pos in poss])
|
||||
if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)):
|
||||
if chunks:
|
||||
chunks[-1] += "\n" + txt + poss
|
||||
tk_cnt += num_tokens_from_string(txt)
|
||||
continue
|
||||
chunks.append(txt + poss)
|
||||
tk_cnt = num_tokens_from_string(txt)
|
||||
if sec_id > -1:
|
||||
last_sid = sec_id
|
||||
|
||||
res = tokenize_table(tbls, doc, eng)
|
||||
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
|
||||
return res
|
||||
if re.search(r"\.docx$", filename, re.IGNORECASE):
|
||||
docx_parser = Docx()
|
||||
ti_list, tbls = docx_parser(filename, binary,
|
||||
from_page=0, to_page=10000, callback=callback)
|
||||
res = tokenize_table(tbls, doc, eng)
|
||||
for text, image in ti_list:
|
||||
d = copy.deepcopy(doc)
|
||||
d['image'] = image
|
||||
tokenize(d, text, eng)
|
||||
res.append(d)
|
||||
return res
|
||||
else:
|
||||
raise NotImplementedError("file type not supported yet(pdf supported)")
|
||||
doc = {
|
||||
"docnm_kwd": filename
|
||||
}
|
||||
doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
|
||||
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
|
||||
# is it English
|
||||
eng = lang.lower() == "english" # pdf_parser.is_english
|
||||
raise NotImplementedError("file type not supported yet(pdf and docx supported)")
|
||||
|
||||
# set pivot using the most frequent type of title,
|
||||
# then merge between 2 pivot
|
||||
if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1:
|
||||
max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
|
||||
most_level = max(0, max_lvl - 1)
|
||||
levels = []
|
||||
for txt, _, _ in sections:
|
||||
for t, lvl in pdf_parser.outlines:
|
||||
tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
|
||||
tks_ = set([txt[i] + txt[i + 1]
|
||||
for i in range(min(len(t), len(txt) - 1))])
|
||||
if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
|
||||
levels.append(lvl)
|
||||
break
|
||||
else:
|
||||
levels.append(max_lvl + 1)
|
||||
|
||||
else:
|
||||
bull = bullets_category([txt for txt, _, _ in sections])
|
||||
most_level, levels = title_frequency(
|
||||
bull, [(txt, l) for txt, l, poss in sections])
|
||||
|
||||
assert len(sections) == len(levels)
|
||||
sec_ids = []
|
||||
sid = 0
|
||||
for i, lvl in enumerate(levels):
|
||||
if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
|
||||
sid += 1
|
||||
sec_ids.append(sid)
|
||||
# print(lvl, self.boxes[i]["text"], most_level, sid)
|
||||
|
||||
sections = [(txt, sec_ids[i], poss)
|
||||
for i, (txt, _, poss) in enumerate(sections)]
|
||||
for (img, rows), poss in tbls:
|
||||
if not rows: continue
|
||||
sections.append((rows if isinstance(rows, str) else rows[0], -1,
|
||||
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
||||
|
||||
def tag(pn, left, right, top, bottom):
|
||||
if pn + left + right + top + bottom == 0:
|
||||
return ""
|
||||
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
|
||||
.format(pn, left, right, top, bottom)
|
||||
|
||||
chunks = []
|
||||
last_sid = -2
|
||||
tk_cnt = 0
|
||||
for txt, sec_id, poss in sorted(sections, key=lambda x: (
|
||||
x[-1][0][0], x[-1][0][3], x[-1][0][1])):
|
||||
poss = "\t".join([tag(*pos) for pos in poss])
|
||||
if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)):
|
||||
if chunks:
|
||||
chunks[-1] += "\n" + txt + poss
|
||||
tk_cnt += num_tokens_from_string(txt)
|
||||
continue
|
||||
chunks.append(txt + poss)
|
||||
tk_cnt = num_tokens_from_string(txt)
|
||||
if sec_id > -1:
|
||||
last_sid = sec_id
|
||||
|
||||
res = tokenize_table(tbls, doc, eng)
|
||||
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
|
||||
return res
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -16,7 +16,7 @@ from io import BytesIO
|
||||
from timeit import default_timer as timer
|
||||
from nltk import word_tokenize
|
||||
from openpyxl import load_workbook
|
||||
from rag.nlp import is_english, random_choices, find_codec, qbullets_category, add_positions, has_qbullet
|
||||
from rag.nlp import is_english, random_choices, find_codec, qbullets_category, add_positions, has_qbullet, docx_question_level
|
||||
from rag.nlp import rag_tokenizer, tokenize_table
|
||||
from rag.settings import cron_logger
|
||||
from deepdoc.parser import PdfParser, ExcelParser, DocxParser
|
||||
@ -165,7 +165,7 @@ class Docx(DocxParser):
|
||||
break
|
||||
question_level, p_text = 0, ''
|
||||
if from_page <= pn < to_page and p.text.strip():
|
||||
question_level, p_text = docxQuestionLevel(p)
|
||||
question_level, p_text = docx_question_level(p)
|
||||
if not question_level or question_level > 6: # not a question
|
||||
last_answer = f'{last_answer}\n{p_text}'
|
||||
current_image = self.get_picture(self.doc, p)
|
||||
@ -254,12 +254,6 @@ def mdQuestionLevel(s):
|
||||
match = re.match(r'#*', s)
|
||||
return (len(match.group(0)), s.lstrip('#').lstrip()) if match else (0, s)
|
||||
|
||||
def docxQuestionLevel(p):
|
||||
if p.style.name.startswith('Heading'):
|
||||
return int(p.style.name.split(' ')[-1]), re.sub(r"\u3000", " ", p.text).strip()
|
||||
else:
|
||||
return 0, re.sub(r"\u3000", " ", p.text).strip()
|
||||
|
||||
def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
|
||||
"""
|
||||
Excel and csv(txt) format files are supported.
|
||||
|
@ -497,3 +497,9 @@ def naive_merge(sections, chunk_token_num=128, delimiter="\n。;!?"):
|
||||
add_chunk(sec[s: e], pos)
|
||||
|
||||
return cks
|
||||
|
||||
def docx_question_level(p):
|
||||
if p.style.name.startswith('Heading'):
|
||||
return int(p.style.name.split(' ')[-1]), re.sub(r"\u3000", " ", p.text).strip()
|
||||
else:
|
||||
return 0, re.sub(r"\u3000", " ", p.text).strip()
|
Loading…
x
Reference in New Issue
Block a user