Feat: add OCR's muti-gpus and parallel processing support (#5972)

### What problem does this PR solve?

Add OCR's muti-gpus and parallel processing support

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

@yuzhichang I've tried to resolve the comments in #5697. OCR jobs can
now be done on both CPU and GPU. ( By the way, I've encountered a
“Generate embedding error” issue #5954 that might be due to my outdated
GPUs? idk. ) Please review it and give me suggestions.

GPU:

![gpu_ocr](https://github.com/user-attachments/assets/0ee2ecfb-a665-4e50-8bc7-15941b9cd80e)

![smi](https://github.com/user-attachments/assets/a2312f8c-cf24-443d-bf89-bec50503546d)

CPU:

![cpu_ocr](https://github.com/user-attachments/assets/1ba6bb0b-94df-41ea-be79-790096da4bf1)
This commit is contained in:
Debug Doctor 2025-03-17 11:58:40 +08:00 committed by GitHub
parent 8495036ff9
commit 3e19044dee
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 157 additions and 48 deletions

View File

@ -20,6 +20,7 @@ import random
from timeit import default_timer as timer
import sys
import threading
import trio
import xgboost as xgb
from io import BytesIO
@ -41,7 +42,7 @@ if LOCK_KEY_pdfplumber not in sys.modules:
sys.modules[LOCK_KEY_pdfplumber] = threading.Lock()
class RAGFlowPdfParser:
def __init__(self):
def __init__(self, parallel_devices: int | None = None):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
@ -53,7 +54,13 @@ class RAGFlowPdfParser:
^_-
"""
self.ocr = OCR()
self.ocr = OCR(parallel_devices = parallel_devices)
self.parallel_devices = parallel_devices
self.parallel_limiter = None
if parallel_devices is not None and parallel_devices > 1:
self.parallel_limiter = [trio.CapacityLimiter(1) for _ in range(parallel_devices)]
if hasattr(self, "model_speciess"):
self.layouter = LayoutRecognizer("layout." + self.model_speciess)
else:
@ -63,7 +70,7 @@ class RAGFlowPdfParser:
self.updown_cnt_mdl = xgb.Booster()
if not settings.LIGHTEN:
try:
import torch
import torch.cuda
if torch.cuda.is_available():
self.updown_cnt_mdl.set_param({"device": "cuda"})
except Exception:
@ -283,9 +290,9 @@ class RAGFlowPdfParser:
b["H_right"] = spans[ii]["x1"]
b["SP"] = ii
def __ocr(self, pagenum, img, chars, ZM=3):
def __ocr(self, pagenum, img, chars, ZM=3, device_id: int | None = None):
start = timer()
bxs = self.ocr.detect(np.array(img))
bxs = self.ocr.detect(np.array(img), device_id)
logging.info(f"__ocr detecting boxes of a image cost ({timer() - start}s)")
start = timer()
@ -330,7 +337,7 @@ class RAGFlowPdfParser:
b["box_image"] = self.ocr.get_rotate_crop_image(img_np, np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32))
boxes_to_reg.append(b)
del b["txt"]
texts = self.ocr.recognize_batch([b["box_image"] for b in boxes_to_reg])
texts = self.ocr.recognize_batch([b["box_image"] for b in boxes_to_reg], device_id)
for i in range(len(boxes_to_reg)):
boxes_to_reg[i]["text"] = texts[i]
del boxes_to_reg[i]["box_image"]
@ -1022,16 +1029,7 @@ class RAGFlowPdfParser:
else:
self.is_english = False
start = timer()
for i, img in enumerate(self.page_images):
chars = self.page_chars[i] if not self.is_english else []
self.mean_height.append(
np.median(sorted([c["height"] for c in chars])) if chars else 0
)
self.mean_width.append(
np.median(sorted([c["width"] for c in chars])) if chars else 8
)
self.page_cum_height.append(img.size[1] / zoomin)
async def __img_ocr(i, id, img, chars, limiter):
j = 0
while j + 1 < len(chars):
if chars[j]["text"] and chars[j + 1]["text"] \
@ -1041,9 +1039,44 @@ class RAGFlowPdfParser:
chars[j]["text"] += " "
j += 1
self.__ocr(i + 1, img, chars, zoomin)
if limiter:
async with limiter:
await trio.to_thread.run_sync(lambda: self.__ocr(i + 1, img, chars, zoomin, id))
else:
self.__ocr(i + 1, img, chars, zoomin, id)
if callback and i % 6 == 5:
callback(prog=(i + 1) * 0.6 / len(self.page_images), msg="")
async def __img_ocr_launcher():
def __ocr_preprocess():
chars = self.page_chars[i] if not self.is_english else []
self.mean_height.append(
np.median(sorted([c["height"] for c in chars])) if chars else 0
)
self.mean_width.append(
np.median(sorted([c["width"] for c in chars])) if chars else 8
)
self.page_cum_height.append(img.size[1] / zoomin)
return chars
if self.parallel_limiter:
async with trio.open_nursery() as nursery:
for i, img in enumerate(self.page_images):
chars = __ocr_preprocess()
nursery.start_soon(__img_ocr, i, i % self.parallel_devices, img, chars,
self.parallel_limiter[i % self.parallel_devices])
await trio.sleep(0.1)
else:
for i, img in enumerate(self.page_images):
chars = __ocr_preprocess()
await __img_ocr(i, 0, img, chars, None)
start = timer()
trio.run(__img_ocr_launcher)
logging.info(f"__images__ {len(self.page_images)} pages cost {timer() - start}s")
if not self.is_english and not any(

View File

@ -66,10 +66,12 @@ def create_operators(op_param_list, global_config=None):
return ops
def load_model(model_dir, nm):
def load_model(model_dir, nm, device_id: int | None = None):
model_file_path = os.path.join(model_dir, nm + ".onnx")
model_cached_tag = model_file_path + str(device_id) if device_id is not None else model_file_path
global loaded_models
loaded_model = loaded_models.get(model_file_path)
loaded_model = loaded_models.get(model_cached_tag)
if loaded_model:
logging.info(f"load_model {model_file_path} reuses cached model")
return loaded_model
@ -81,7 +83,7 @@ def load_model(model_dir, nm):
def cuda_is_available():
try:
import torch
if torch.cuda.is_available():
if torch.cuda.is_available() and torch.cuda.device_count() > device_id:
return True
except Exception:
return False
@ -98,7 +100,7 @@ def load_model(model_dir, nm):
run_options = ort.RunOptions()
if cuda_is_available():
cuda_provider_options = {
"device_id": 0, # Use specific GPU
"device_id": device_id, # Use specific GPU
"gpu_mem_limit": 512 * 1024 * 1024, # Limit gpu memory
"arena_extend_strategy": "kNextPowerOfTwo", # gpu memory allocation strategy
}
@ -108,7 +110,7 @@ def load_model(model_dir, nm):
providers=['CUDAExecutionProvider'],
provider_options=[cuda_provider_options]
)
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:0")
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:" + str(device_id))
logging.info(f"load_model {model_file_path} uses GPU")
else:
sess = ort.InferenceSession(
@ -118,12 +120,12 @@ def load_model(model_dir, nm):
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "cpu")
logging.info(f"load_model {model_file_path} uses CPU")
loaded_model = (sess, run_options)
loaded_models[model_file_path] = loaded_model
loaded_models[model_cached_tag] = loaded_model
return loaded_model
class TextRecognizer:
def __init__(self, model_dir):
def __init__(self, model_dir, device_id: int | None = None):
self.rec_image_shape = [int(v) for v in "3, 48, 320".split(",")]
self.rec_batch_num = 16
postprocess_params = {
@ -132,7 +134,7 @@ class TextRecognizer:
"use_space_char": True
}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.run_options = load_model(model_dir, 'rec')
self.predictor, self.run_options = load_model(model_dir, 'rec', device_id)
self.input_tensor = self.predictor.get_inputs()[0]
def resize_norm_img(self, img, max_wh_ratio):
@ -394,7 +396,7 @@ class TextRecognizer:
class TextDetector:
def __init__(self, model_dir):
def __init__(self, model_dir, device_id: int | None = None):
pre_process_list = [{
'DetResizeForTest': {
'limit_side_len': 960,
@ -418,7 +420,7 @@ class TextDetector:
"unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.run_options = load_model(model_dir, 'det')
self.predictor, self.run_options = load_model(model_dir, 'det', device_id)
self.input_tensor = self.predictor.get_inputs()[0]
img_h, img_w = self.input_tensor.shape[2:]
@ -507,7 +509,7 @@ class TextDetector:
class OCR:
def __init__(self, model_dir=None):
def __init__(self, model_dir=None, parallel_devices: int | None = None):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
@ -524,14 +526,33 @@ class OCR:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
self.text_detector = TextDetector(model_dir)
self.text_recognizer = TextRecognizer(model_dir)
# Append muti-gpus task to the list
if parallel_devices is not None and parallel_devices > 0:
self.text_detector = []
self.text_recognizer = []
for device_id in range(parallel_devices):
self.text_detector.append(TextDetector(model_dir, device_id))
self.text_recognizer.append(TextRecognizer(model_dir, device_id))
else:
self.text_detector = [TextDetector(model_dir, 0)]
self.text_recognizer = [TextRecognizer(model_dir, 0)]
except Exception:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
self.text_detector = TextDetector(model_dir)
self.text_recognizer = TextRecognizer(model_dir)
if parallel_devices is not None:
assert parallel_devices > 0 , "Number of devices must be >= 1"
self.text_detector = []
self.text_recognizer = []
for device_id in range(parallel_devices):
self.text_detector.append(TextDetector(model_dir, device_id))
self.text_recognizer.append(TextRecognizer(model_dir, device_id))
else:
self.text_detector = [TextDetector(model_dir, 0)]
self.text_recognizer = [TextRecognizer(model_dir, 0)]
self.drop_score = 0.5
self.crop_image_res_index = 0
@ -593,14 +614,17 @@ class OCR:
break
return _boxes
def detect(self, img):
def detect(self, img, device_id: int | None = None):
if device_id is None:
device_id = 0
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
if img is None:
return None, None, time_dict
start = time.time()
dt_boxes, elapse = self.text_detector(img)
dt_boxes, elapse = self.text_detector[device_id](img)
time_dict['det'] = elapse
if dt_boxes is None:
@ -611,17 +635,22 @@ class OCR:
return zip(self.sorted_boxes(dt_boxes), [
("", 0) for _ in range(len(dt_boxes))])
def recognize(self, ori_im, box):
def recognize(self, ori_im, box, device_id: int | None = None):
if device_id is None:
device_id = 0
img_crop = self.get_rotate_crop_image(ori_im, box)
rec_res, elapse = self.text_recognizer([img_crop])
rec_res, elapse = self.text_recognizer[device_id]([img_crop])
text, score = rec_res[0]
if score < self.drop_score:
return ""
return text
def recognize_batch(self, img_list):
rec_res, elapse = self.text_recognizer(img_list)
def recognize_batch(self, img_list, device_id: int | None = None):
if device_id is None:
device_id = 0
rec_res, elapse = self.text_recognizer[device_id](img_list)
texts = []
for i in range(len(rec_res)):
text, score = rec_res[i]
@ -630,15 +659,17 @@ class OCR:
texts.append(text)
return texts
def __call__(self, img, cls=True):
def __call__(self, img, device_id = 0, cls=True):
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
if device_id is None:
device_id = 0
if img is None:
return None, None, time_dict
start = time.time()
ori_im = img.copy()
dt_boxes, elapse = self.text_detector(img)
dt_boxes, elapse = self.text_detector[device_id](img)
time_dict['det'] = elapse
if dt_boxes is None:
@ -655,7 +686,7 @@ class OCR:
img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
img_crop_list.append(img_crop)
rec_res, elapse = self.text_recognizer(img_crop_list)
rec_res, elapse = self.text_recognizer[device_id](img_crop_list)
time_dict['rec'] = elapse

View File

@ -28,14 +28,24 @@ from deepdoc.vision.seeit import draw_box
from deepdoc.vision import OCR, init_in_out
import argparse
import numpy as np
import trio
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,2' #2 gpus, uncontinuous
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #1 gpu
# os.environ['CUDA_VISIBLE_DEVICES'] = '' #cpu
def main(args):
ocr = OCR()
import torch.cuda
cuda_devices = torch.cuda.device_count()
limiter = [trio.CapacityLimiter(1) for _ in range(cuda_devices)] if cuda_devices > 1 else None
ocr = OCR(parallel_devices = cuda_devices)
images, outputs = init_in_out(args)
for i, img in enumerate(images):
bxs = ocr(np.array(img))
def __ocr(i, id, img):
print("Task {} start".format(i))
bxs = ocr(np.array(img), id)
bxs = [(line[0], line[1][0]) for line in bxs]
bxs = [{
"text": t,
@ -47,6 +57,30 @@ def main(args):
with open(outputs[i] + ".txt", "w+", encoding='utf-8') as f:
f.write("\n".join([o["text"] for o in bxs]))
print("Task {} done".format(i))
async def __ocr_thread(i, id, img, limiter = None):
if limiter:
async with limiter:
print("Task {} use device {}".format(i, id))
await trio.to_thread.run_sync(lambda: __ocr(i, id, img))
else:
__ocr(i, id, img)
async def __ocr_launcher():
if cuda_devices > 1:
async with trio.open_nursery() as nursery:
for i, img in enumerate(images):
nursery.start_soon(__ocr_thread, i, i % cuda_devices, img, limiter[i % cuda_devices])
await trio.sleep(0.1)
else:
for i, img in enumerate(images):
await __ocr_thread(i, 0, img)
trio.run(__ocr_launcher)
print("OCR tasks are all done")
if __name__ == "__main__":
parser = argparse.ArgumentParser()

View File

@ -128,6 +128,9 @@ class Docx(DocxParser):
class Pdf(PdfParser):
def __init__(self, parallel_devices = None):
super().__init__(parallel_devices)
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
start = timer()
@ -194,7 +197,7 @@ class Markdown(MarkdownParser):
def chunk(filename, binary=None, from_page=0, to_page=100000,
lang="Chinese", callback=None, **kwargs):
lang="Chinese", parallel_devices=None, callback=None, **kwargs):
"""
Supported file formats are docx, pdf, excel, txt.
This method apply the naive ways to chunk files.
@ -234,7 +237,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
return res
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
pdf_parser = Pdf(parallel_devices)
if parser_config.get("layout_recognize", "DeepDOC") == "Plain Text":
pdf_parser = PlainParser()
sections, tables = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page,

View File

@ -100,6 +100,14 @@ MAX_CONCURRENT_CHUNK_BUILDERS = int(os.environ.get('MAX_CONCURRENT_CHUNK_BUILDER
task_limiter = trio.CapacityLimiter(MAX_CONCURRENT_TASKS)
chunk_limiter = trio.CapacityLimiter(MAX_CONCURRENT_CHUNK_BUILDERS)
PARALLEL_DEVICES = None
try:
import torch.cuda
PARALLEL_DEVICES = torch.cuda.device_count()
logging.info(f"found {PARALLEL_DEVICES} gpus")
except Exception:
logging.info("can't import package 'torch'")
# SIGUSR1 handler: start tracemalloc and take snapshot
def start_tracemalloc_and_snapshot(signum, frame):
if not tracemalloc.is_tracing():
@ -241,7 +249,7 @@ async def build_chunks(task, progress_callback):
try:
async with chunk_limiter:
cks = await trio.to_thread.run_sync(lambda: chunker.chunk(task["name"], binary=binary, from_page=task["from_page"],
to_page=task["to_page"], lang=task["language"], callback=progress_callback,
to_page=task["to_page"], lang=task["language"], parallel_devices = PARALLEL_DEVICES, callback=progress_callback,
kb_id=task["kb_id"], parser_config=task["parser_config"], tenant_id=task["tenant_id"]))
logging.info("Chunking({}) {}/{} done".format(timer() - st, task["location"], task["name"]))
except TaskCanceledException: