add support for LocalAI (#1608)

### What problem does this PR solve?

#762 

### Type of change
- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
黄腾 2024-07-19 15:50:28 +08:00 committed by GitHub
parent 915354bec9
commit 3fcdba1683
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 166 additions and 6 deletions

View File

@ -20,7 +20,7 @@ from api.utils.api_utils import server_error_response, get_data_error_result, va
from api.db import StatusEnum, LLMType
from api.db.db_models import TenantLLM
from api.utils.api_utils import get_json_result
from rag.llm import EmbeddingModel, ChatModel, RerankModel
from rag.llm import EmbeddingModel, ChatModel, RerankModel,CvModel
@manager.route('/factories', methods=['GET'])
@ -126,6 +126,9 @@ def add_llm():
api_key = '{' + f'"bedrock_ak": "{req.get("bedrock_ak", "")}", ' \
f'"bedrock_sk": "{req.get("bedrock_sk", "")}", ' \
f'"bedrock_region": "{req.get("bedrock_region", "")}", ' + '}'
elif factory == "LocalAI":
llm_name = req["llm_name"]+"___LocalAI"
api_key = "xxxxxxxxxxxxxxx"
else:
llm_name = req["llm_name"]
api_key = "xxxxxxxxxxxxxxx"
@ -176,6 +179,21 @@ def add_llm():
except Exception as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(
e)
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
mdl = CvModel[factory](
key=None, model_name=llm["llm_name"], base_url=llm["api_base"]
)
try:
img_url = (
"https://upload.wikimedia.org/wikipedia/comm"
"ons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/256"
"0px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
)
m, tc = mdl.describe(img_url)
if not tc:
raise Exception(m)
except Exception as e:
msg += f"\nFail to access model({llm['llm_name']})." + str(e)
else:
# TODO: check other type of models
pass

View File

@ -157,6 +157,13 @@
"status": "1",
"llm": []
},
{
"name": "LocalAI",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
"llm": []
},
{
"name": "Moonshot",
"logo": "",

View File

@ -21,6 +21,7 @@ from .rerank_model import *
EmbeddingModel = {
"Ollama": OllamaEmbed,
"LocalAI": LocalAIEmbed,
"OpenAI": OpenAIEmbed,
"Azure-OpenAI": AzureEmbed,
"Xinference": XinferenceEmbed,
@ -46,7 +47,8 @@ CvModel = {
"ZHIPU-AI": Zhipu4V,
"Moonshot": LocalCV,
'Gemini':GeminiCV,
'OpenRouter':OpenRouterCV
'OpenRouter':OpenRouterCV,
"LocalAI":LocalAICV
}
@ -56,6 +58,7 @@ ChatModel = {
"ZHIPU-AI": ZhipuChat,
"Tongyi-Qianwen": QWenChat,
"Ollama": OllamaChat,
"LocalAI": LocalAIChat,
"Xinference": XinferenceChat,
"Moonshot": MoonshotChat,
"DeepSeek": DeepSeekChat,
@ -67,7 +70,7 @@ ChatModel = {
'Gemini' : GeminiChat,
"Bedrock": BedrockChat,
"Groq": GroqChat,
'OpenRouter':OpenRouterChat
'OpenRouter':OpenRouterChat,
}

View File

@ -348,6 +348,82 @@ class OllamaChat(Base):
yield 0
class LocalAIChat(Base):
def __init__(self, key, model_name, base_url):
if base_url[-1] == "/":
base_url = base_url[:-1]
self.base_url = base_url + "/v1/chat/completions"
self.model_name = model_name.split("___")[0]
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
headers = {
"Content-Type": "application/json",
}
payload = json.dumps(
{"model": self.model_name, "messages": history, **gen_conf}
)
try:
response = requests.request(
"POST", url=self.base_url, headers=headers, data=payload
)
response = response.json()
ans = response["choices"][0]["message"]["content"].strip()
if response["choices"][0]["finish_reason"] == "length":
ans += (
"...\nFor the content length reason, it stopped, continue?"
if is_english([ans])
else "······\n由于长度的原因,回答被截断了,要继续吗?"
)
return ans, response["usage"]["total_tokens"]
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
total_tokens = 0
try:
headers = {
"Content-Type": "application/json",
}
payload = json.dumps(
{
"model": self.model_name,
"messages": history,
"stream": True,
**gen_conf,
}
)
response = requests.request(
"POST",
url=self.base_url,
headers=headers,
data=payload,
)
for resp in response.content.decode("utf-8").split("\n\n"):
if "choices" not in resp:
continue
resp = json.loads(resp[6:])
if "delta" in resp["choices"][0]:
text = resp["choices"][0]["delta"]["content"]
else:
continue
ans += text
total_tokens += 1
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class LocalLLM(Base):
class RPCProxy:
def __init__(self, host, port):

View File

@ -189,6 +189,35 @@ class OllamaCV(Base):
return "**ERROR**: " + str(e), 0
class LocalAICV(Base):
def __init__(self, key, model_name, base_url, lang="Chinese"):
self.client = OpenAI(api_key="empty", base_url=base_url)
self.model_name = model_name.split("___")[0]
self.lang = lang
def describe(self, image, max_tokens=300):
if not isinstance(image, bytes) and not isinstance(
image, BytesIO
): # if url string
prompt = self.prompt(image)
for i in range(len(prompt)):
prompt[i]["content"]["image_url"]["url"] = image
else:
b64 = self.image2base64(image)
prompt = self.prompt(b64)
for i in range(len(prompt)):
for c in prompt[i]["content"]:
if "text" in c:
c["type"] = "text"
res = self.client.chat.completions.create(
model=self.model_name,
messages=prompt,
max_tokens=max_tokens,
)
return res.choices[0].message.content.strip(), res.usage.total_tokens
class XinferenceCV(Base):
def __init__(self, key, model_name="", lang="Chinese", base_url=""):
self.client = OpenAI(api_key="xxx", base_url=base_url)

View File

@ -111,6 +111,24 @@ class OpenAIEmbed(Base):
return np.array(res.data[0].embedding), res.usage.total_tokens
class LocalAIEmbed(Base):
def __init__(self, key, model_name, base_url):
self.base_url = base_url + "/embeddings"
self.headers = {
"Content-Type": "application/json",
}
self.model_name = model_name.split("___")[0]
def encode(self, texts: list, batch_size=None):
data = {"model": self.model_name, "input": texts, "encoding_type": "float"}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
return np.array([d["embedding"] for d in res["data"]]), 1024
def encode_queries(self, text):
embds, cnt = self.encode([text])
return np.array(embds[0]), cnt
class AzureEmbed(OpenAIEmbed):
def __init__(self, key, model_name, **kwargs):
self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
@ -443,4 +461,4 @@ class GeminiEmbed(Base):
task_type="retrieval_document",
title="Embedding of single string")
token_count = num_tokens_from_string(text)
return np.array(result['embedding']),token_count
return np.array(result['embedding']),token_count

View File

@ -135,7 +135,7 @@ class YoudaoRerank(DefaultRerank):
if isinstance(scores, float): res.append(scores)
else: res.extend(scores)
return np.array(res), token_count
class XInferenceRerank(Base):
def __init__(self, key="xxxxxxx", model_name="", base_url=""):
@ -156,3 +156,11 @@ class XInferenceRerank(Base):
}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
return np.array([d["relevance_score"] for d in res["results"]]), res["meta"]["tokens"]["input_tokens"]+res["meta"]["tokens"]["output_tokens"]
class LocalAIRerank(Base):
def __init__(self, key, model_name, base_url):
pass
def similarity(self, query: str, texts: list):
raise NotImplementedError("The LocalAIRerank has not been implement")

View File

@ -17,4 +17,4 @@ export const UserSettingIconMap = {
export * from '@/constants/setting';
export const LocalLlmFactories = ['Ollama', 'Xinference'];
export const LocalLlmFactories = ['Ollama', 'Xinference','LocalAI'];

View File

@ -75,6 +75,7 @@ const OllamaModal = ({
<Option value="chat">chat</Option>
<Option value="embedding">embedding</Option>
<Option value="rerank">rerank</Option>
<Option value="image2text">image2text</Option>
</Select>
</Form.Item>
<Form.Item<FieldType>