mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-07-31 16:11:59 +08:00
add support for LocalAI (#1608)
### What problem does this PR solve? #762 ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
parent
915354bec9
commit
3fcdba1683
@ -20,7 +20,7 @@ from api.utils.api_utils import server_error_response, get_data_error_result, va
|
||||
from api.db import StatusEnum, LLMType
|
||||
from api.db.db_models import TenantLLM
|
||||
from api.utils.api_utils import get_json_result
|
||||
from rag.llm import EmbeddingModel, ChatModel, RerankModel
|
||||
from rag.llm import EmbeddingModel, ChatModel, RerankModel,CvModel
|
||||
|
||||
|
||||
@manager.route('/factories', methods=['GET'])
|
||||
@ -126,6 +126,9 @@ def add_llm():
|
||||
api_key = '{' + f'"bedrock_ak": "{req.get("bedrock_ak", "")}", ' \
|
||||
f'"bedrock_sk": "{req.get("bedrock_sk", "")}", ' \
|
||||
f'"bedrock_region": "{req.get("bedrock_region", "")}", ' + '}'
|
||||
elif factory == "LocalAI":
|
||||
llm_name = req["llm_name"]+"___LocalAI"
|
||||
api_key = "xxxxxxxxxxxxxxx"
|
||||
else:
|
||||
llm_name = req["llm_name"]
|
||||
api_key = "xxxxxxxxxxxxxxx"
|
||||
@ -176,6 +179,21 @@ def add_llm():
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access model({llm['llm_name']})." + str(
|
||||
e)
|
||||
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
|
||||
mdl = CvModel[factory](
|
||||
key=None, model_name=llm["llm_name"], base_url=llm["api_base"]
|
||||
)
|
||||
try:
|
||||
img_url = (
|
||||
"https://upload.wikimedia.org/wikipedia/comm"
|
||||
"ons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/256"
|
||||
"0px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||||
)
|
||||
m, tc = mdl.describe(img_url)
|
||||
if not tc:
|
||||
raise Exception(m)
|
||||
except Exception as e:
|
||||
msg += f"\nFail to access model({llm['llm_name']})." + str(e)
|
||||
else:
|
||||
# TODO: check other type of models
|
||||
pass
|
||||
|
@ -157,6 +157,13 @@
|
||||
"status": "1",
|
||||
"llm": []
|
||||
},
|
||||
{
|
||||
"name": "LocalAI",
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
||||
"status": "1",
|
||||
"llm": []
|
||||
},
|
||||
{
|
||||
"name": "Moonshot",
|
||||
"logo": "",
|
||||
|
@ -21,6 +21,7 @@ from .rerank_model import *
|
||||
|
||||
EmbeddingModel = {
|
||||
"Ollama": OllamaEmbed,
|
||||
"LocalAI": LocalAIEmbed,
|
||||
"OpenAI": OpenAIEmbed,
|
||||
"Azure-OpenAI": AzureEmbed,
|
||||
"Xinference": XinferenceEmbed,
|
||||
@ -46,7 +47,8 @@ CvModel = {
|
||||
"ZHIPU-AI": Zhipu4V,
|
||||
"Moonshot": LocalCV,
|
||||
'Gemini':GeminiCV,
|
||||
'OpenRouter':OpenRouterCV
|
||||
'OpenRouter':OpenRouterCV,
|
||||
"LocalAI":LocalAICV
|
||||
}
|
||||
|
||||
|
||||
@ -56,6 +58,7 @@ ChatModel = {
|
||||
"ZHIPU-AI": ZhipuChat,
|
||||
"Tongyi-Qianwen": QWenChat,
|
||||
"Ollama": OllamaChat,
|
||||
"LocalAI": LocalAIChat,
|
||||
"Xinference": XinferenceChat,
|
||||
"Moonshot": MoonshotChat,
|
||||
"DeepSeek": DeepSeekChat,
|
||||
@ -67,7 +70,7 @@ ChatModel = {
|
||||
'Gemini' : GeminiChat,
|
||||
"Bedrock": BedrockChat,
|
||||
"Groq": GroqChat,
|
||||
'OpenRouter':OpenRouterChat
|
||||
'OpenRouter':OpenRouterChat,
|
||||
}
|
||||
|
||||
|
||||
|
@ -348,6 +348,82 @@ class OllamaChat(Base):
|
||||
yield 0
|
||||
|
||||
|
||||
class LocalAIChat(Base):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
if base_url[-1] == "/":
|
||||
base_url = base_url[:-1]
|
||||
self.base_url = base_url + "/v1/chat/completions"
|
||||
self.model_name = model_name.split("___")[0]
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
if system:
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
for k in list(gen_conf.keys()):
|
||||
if k not in ["temperature", "top_p", "max_tokens"]:
|
||||
del gen_conf[k]
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
payload = json.dumps(
|
||||
{"model": self.model_name, "messages": history, **gen_conf}
|
||||
)
|
||||
try:
|
||||
response = requests.request(
|
||||
"POST", url=self.base_url, headers=headers, data=payload
|
||||
)
|
||||
response = response.json()
|
||||
ans = response["choices"][0]["message"]["content"].strip()
|
||||
if response["choices"][0]["finish_reason"] == "length":
|
||||
ans += (
|
||||
"...\nFor the content length reason, it stopped, continue?"
|
||||
if is_english([ans])
|
||||
else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
||||
)
|
||||
return ans, response["usage"]["total_tokens"]
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf):
|
||||
if system:
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
ans = ""
|
||||
total_tokens = 0
|
||||
try:
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
payload = json.dumps(
|
||||
{
|
||||
"model": self.model_name,
|
||||
"messages": history,
|
||||
"stream": True,
|
||||
**gen_conf,
|
||||
}
|
||||
)
|
||||
response = requests.request(
|
||||
"POST",
|
||||
url=self.base_url,
|
||||
headers=headers,
|
||||
data=payload,
|
||||
)
|
||||
for resp in response.content.decode("utf-8").split("\n\n"):
|
||||
if "choices" not in resp:
|
||||
continue
|
||||
resp = json.loads(resp[6:])
|
||||
if "delta" in resp["choices"][0]:
|
||||
text = resp["choices"][0]["delta"]["content"]
|
||||
else:
|
||||
continue
|
||||
ans += text
|
||||
total_tokens += 1
|
||||
yield ans
|
||||
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield total_tokens
|
||||
|
||||
|
||||
class LocalLLM(Base):
|
||||
class RPCProxy:
|
||||
def __init__(self, host, port):
|
||||
|
@ -189,6 +189,35 @@ class OllamaCV(Base):
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
|
||||
class LocalAICV(Base):
|
||||
def __init__(self, key, model_name, base_url, lang="Chinese"):
|
||||
self.client = OpenAI(api_key="empty", base_url=base_url)
|
||||
self.model_name = model_name.split("___")[0]
|
||||
self.lang = lang
|
||||
|
||||
def describe(self, image, max_tokens=300):
|
||||
if not isinstance(image, bytes) and not isinstance(
|
||||
image, BytesIO
|
||||
): # if url string
|
||||
prompt = self.prompt(image)
|
||||
for i in range(len(prompt)):
|
||||
prompt[i]["content"]["image_url"]["url"] = image
|
||||
else:
|
||||
b64 = self.image2base64(image)
|
||||
prompt = self.prompt(b64)
|
||||
for i in range(len(prompt)):
|
||||
for c in prompt[i]["content"]:
|
||||
if "text" in c:
|
||||
c["type"] = "text"
|
||||
|
||||
res = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=prompt,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
return res.choices[0].message.content.strip(), res.usage.total_tokens
|
||||
|
||||
|
||||
class XinferenceCV(Base):
|
||||
def __init__(self, key, model_name="", lang="Chinese", base_url=""):
|
||||
self.client = OpenAI(api_key="xxx", base_url=base_url)
|
||||
|
@ -111,6 +111,24 @@ class OpenAIEmbed(Base):
|
||||
return np.array(res.data[0].embedding), res.usage.total_tokens
|
||||
|
||||
|
||||
class LocalAIEmbed(Base):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
self.base_url = base_url + "/embeddings"
|
||||
self.headers = {
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
self.model_name = model_name.split("___")[0]
|
||||
|
||||
def encode(self, texts: list, batch_size=None):
|
||||
data = {"model": self.model_name, "input": texts, "encoding_type": "float"}
|
||||
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
||||
|
||||
return np.array([d["embedding"] for d in res["data"]]), 1024
|
||||
|
||||
def encode_queries(self, text):
|
||||
embds, cnt = self.encode([text])
|
||||
return np.array(embds[0]), cnt
|
||||
|
||||
class AzureEmbed(OpenAIEmbed):
|
||||
def __init__(self, key, model_name, **kwargs):
|
||||
self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
|
||||
@ -443,4 +461,4 @@ class GeminiEmbed(Base):
|
||||
task_type="retrieval_document",
|
||||
title="Embedding of single string")
|
||||
token_count = num_tokens_from_string(text)
|
||||
return np.array(result['embedding']),token_count
|
||||
return np.array(result['embedding']),token_count
|
||||
|
@ -135,7 +135,7 @@ class YoudaoRerank(DefaultRerank):
|
||||
if isinstance(scores, float): res.append(scores)
|
||||
else: res.extend(scores)
|
||||
return np.array(res), token_count
|
||||
|
||||
|
||||
|
||||
class XInferenceRerank(Base):
|
||||
def __init__(self, key="xxxxxxx", model_name="", base_url=""):
|
||||
@ -156,3 +156,11 @@ class XInferenceRerank(Base):
|
||||
}
|
||||
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
||||
return np.array([d["relevance_score"] for d in res["results"]]), res["meta"]["tokens"]["input_tokens"]+res["meta"]["tokens"]["output_tokens"]
|
||||
|
||||
|
||||
class LocalAIRerank(Base):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
pass
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
raise NotImplementedError("The LocalAIRerank has not been implement")
|
||||
|
@ -17,4 +17,4 @@ export const UserSettingIconMap = {
|
||||
|
||||
export * from '@/constants/setting';
|
||||
|
||||
export const LocalLlmFactories = ['Ollama', 'Xinference'];
|
||||
export const LocalLlmFactories = ['Ollama', 'Xinference','LocalAI'];
|
||||
|
@ -75,6 +75,7 @@ const OllamaModal = ({
|
||||
<Option value="chat">chat</Option>
|
||||
<Option value="embedding">embedding</Option>
|
||||
<Option value="rerank">rerank</Option>
|
||||
<Option value="image2text">image2text</Option>
|
||||
</Select>
|
||||
</Form.Item>
|
||||
<Form.Item<FieldType>
|
||||
|
Loading…
x
Reference in New Issue
Block a user