add inputs to display to every components (#3242)

### What problem does this PR solve?

#3240

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Kevin Hu 2024-11-06 18:47:53 +08:00 committed by GitHub
parent f3aaa0d453
commit 4097912d59
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 47 additions and 98 deletions

View File

@ -37,6 +37,7 @@ class ComponentParamBase(ABC):
self.output_var_name = "output"
self.message_history_window_size = 22
self.query = []
self.inputs = []
def set_name(self, name: str):
self._name = name
@ -444,8 +445,13 @@ class ComponentBase(ABC):
if self._param.query:
outs = []
for q in self._param.query:
if q["value"]: outs.append(pd.DataFrame([{"content": q["value"]}]))
if q["component_id"]: outs.append(self._canvas.get_component(q["component_id"])["obj"].output(allow_partial=False)[1])
if q["component_id"]:
outs.append(self._canvas.get_component(q["component_id"])["obj"].output(allow_partial=False)[1])
self._param.inputs.append({"component_id": q["component_id"],
"content": "\n".join([str(d["content"]) for d in outs[-1].to_dict('records')])})
elif q["value"]:
self._param.inputs.append({"component_id": None, "content": q["value"]})
outs.append(pd.DataFrame([{"content": q["value"]}]))
if outs:
df = pd.concat(outs, ignore_index=True)
if "content" in df: df = df.drop_duplicates(subset=['content']).reset_index(drop=True)
@ -463,31 +469,38 @@ class ComponentBase(ABC):
if self.component_name.lower() == "generate" and self.get_component_name(u) == "retrieval":
o = self._canvas.get_component(u)["obj"].output(allow_partial=False)[1]
if o is not None:
o["component_id"] = u
upstream_outs.append(o)
continue
if u not in self._canvas.get_component(self._id)["upstream"]: continue
if self.component_name.lower()!="answer" and u not in self._canvas.get_component(self._id)["upstream"]: continue
if self.component_name.lower().find("switch") < 0 \
and self.get_component_name(u) in ["relevant", "categorize"]:
continue
if u.lower().find("answer") >= 0:
for r, c in self._canvas.history[::-1]:
if r == "user":
upstream_outs.append(pd.DataFrame([{"content": c}]))
upstream_outs.append(pd.DataFrame([{"content": c, "component_id": u}]))
break
break
if self.component_name.lower().find("answer") >= 0 and self.get_component_name(u) in ["relevant"]:
continue
o = self._canvas.get_component(u)["obj"].output(allow_partial=False)[1]
if o is not None:
o["component_id"] = u
upstream_outs.append(o)
break
if upstream_outs:
df = pd.concat(upstream_outs, ignore_index=True)
if "content" in df:
df = df.drop_duplicates(subset=['content']).reset_index(drop=True)
return df
return pd.DataFrame(self._canvas.get_history(3)[-1:])
assert upstream_outs, "Can't inference the where the component input is."
df = pd.concat(upstream_outs, ignore_index=True)
if "content" in df:
df = df.drop_duplicates(subset=['content']).reset_index(drop=True)
self._param.inputs = []
for _,r in df.iterrows():
self._param.inputs.append({"component_id": r["component_id"], "content": r["content"]})
return df
def get_stream_input(self):
reversed_cpnts = []

View File

@ -1,75 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from agent.component.base import ComponentBase, ComponentParamBase
class CiteParam(ComponentParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
super().__init__()
self.cite_sources = []
def check(self):
self.check_empty(self.cite_source, "Please specify where you want to cite from.")
class Cite(ComponentBase, ABC):
component_name = "Cite"
def _run(self, history, **kwargs):
input = "\n- ".join(self.get_input()["content"])
sources = [self._canvas.get_component(cpn_id).output()[1] for cpn_id in self._param.cite_source]
query = []
for role, cnt in history[::-1][:self._param.message_history_window_size]:
if role != "user":continue
query.append(cnt)
query = "\n".join(query)
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
if not kbs:
raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids))
embd_nms = list(set([kb.embd_id for kb in kbs]))
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
embd_mdl = LLMBundle(kbs[0].tenant_id, LLMType.EMBEDDING, embd_nms[0])
rerank_mdl = None
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
1, self._param.top_n,
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
aggs=False, rerank_mdl=rerank_mdl)
if not kbinfos["chunks"]: return pd.DataFrame()
df = pd.DataFrame(kbinfos["chunks"])
df["content"] = df["content_with_weight"]
del df["content_with_weight"]
return df

View File

@ -101,8 +101,8 @@ class Generate(ComponentBase):
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
prompt = self._param.prompt
retrieval_res = self.get_input()
input = (" - "+"\n - ".join([c for c in retrieval_res["content"] if isinstance(c, str)])) if "content" in retrieval_res else ""
retrieval_res = []
self._param.inputs = []
for para in self._param.parameters:
cpn = self._canvas.get_component(para["component_id"])["obj"]
if cpn.component_name.lower() == "answer":
@ -112,12 +112,24 @@ class Generate(ComponentBase):
if "content" not in out.columns:
kwargs[para["key"]] = "Nothing"
else:
if cpn.component_name.lower() == "retrieval":
retrieval_res.append(out)
kwargs[para["key"]] = " - "+"\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["component_id"], "content": kwargs[para["key"]]})
if retrieval_res:
retrieval_res = pd.concat(retrieval_res, ignore_index=True)
else: retrieval_res = pd.DataFrame([])
kwargs["input"] = input
for n, v in kwargs.items():
prompt = re.sub(r"\{%s\}" % re.escape(n), re.escape(str(v)), prompt)
if not self._param.inputs and prompt.find("{input}") >= 0:
retrieval_res = self.get_input()
input = (" - " + "\n - ".join(
[c for c in retrieval_res["content"] if isinstance(c, str)])) if "content" in retrieval_res else ""
prompt = re.sub(r"\{input\}", re.escape(input), prompt)
downstreams = self._canvas.get_component(self._id)["downstream"]
if kwargs.get("stream") and len(downstreams) == 1 and self._canvas.get_component(downstreams[0])[
"obj"].component_name.lower() == "answer":

View File

@ -50,14 +50,11 @@ class KeywordExtract(Generate, ABC):
component_name = "KeywordExtract"
def _run(self, history, **kwargs):
q = ""
for r, c in self._canvas.history[::-1]:
if r == "user":
q += c
break
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": q}],
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": query}],
self._param.gen_conf())
ans = re.sub(r".*keyword:", "", ans).strip()

View File

@ -396,6 +396,7 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
rows = ["|" +
"|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
"|" for r in tbl["rows"]]
rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
if quota:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
else:

View File

@ -1299,7 +1299,7 @@
"llm": []
},
{
"name": "cohere",
"name": "Cohere",
"logo": "",
"tags": "LLM,TEXT EMBEDDING, TEXT RE-RANK",
"status": "1",

View File

@ -39,7 +39,7 @@ EmbeddingModel = {
"NVIDIA": NvidiaEmbed,
"LM-Studio": LmStudioEmbed,
"OpenAI-API-Compatible": OpenAI_APIEmbed,
"cohere": CoHereEmbed,
"Cohere": CoHereEmbed,
"TogetherAI": TogetherAIEmbed,
"PerfXCloud": PerfXCloudEmbed,
"Upstage": UpstageEmbed,
@ -92,7 +92,7 @@ ChatModel = {
"NVIDIA": NvidiaChat,
"LM-Studio": LmStudioChat,
"OpenAI-API-Compatible": OpenAI_APIChat,
"cohere": CoHereChat,
"Cohere": CoHereChat,
"LeptonAI": LeptonAIChat,
"TogetherAI": TogetherAIChat,
"PerfXCloud": PerfXCloudChat,
@ -117,7 +117,7 @@ RerankModel = {
"NVIDIA": NvidiaRerank,
"LM-Studio": LmStudioRerank,
"OpenAI-API-Compatible": OpenAI_APIRerank,
"cohere": CoHereRerank,
"Cohere": CoHereRerank,
"TogetherAI": TogetherAIRerank,
"SILICONFLOW": SILICONFLOWRerank,
"BaiduYiyan": BaiduYiyanRerank,

View File

@ -394,6 +394,7 @@ class VoyageRerank(Base):
rank[r.index] = r.relevance_score
return rank, res.total_tokens
class QWenRerank(Base):
def __init__(self, key, model_name='gte-rerank', base_url=None, **kwargs):
import dashscope