mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-12 03:39:03 +08:00
add inputs to display to every components (#3242)
### What problem does this PR solve? #3240 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
parent
f3aaa0d453
commit
4097912d59
@ -37,6 +37,7 @@ class ComponentParamBase(ABC):
|
||||
self.output_var_name = "output"
|
||||
self.message_history_window_size = 22
|
||||
self.query = []
|
||||
self.inputs = []
|
||||
|
||||
def set_name(self, name: str):
|
||||
self._name = name
|
||||
@ -444,8 +445,13 @@ class ComponentBase(ABC):
|
||||
if self._param.query:
|
||||
outs = []
|
||||
for q in self._param.query:
|
||||
if q["value"]: outs.append(pd.DataFrame([{"content": q["value"]}]))
|
||||
if q["component_id"]: outs.append(self._canvas.get_component(q["component_id"])["obj"].output(allow_partial=False)[1])
|
||||
if q["component_id"]:
|
||||
outs.append(self._canvas.get_component(q["component_id"])["obj"].output(allow_partial=False)[1])
|
||||
self._param.inputs.append({"component_id": q["component_id"],
|
||||
"content": "\n".join([str(d["content"]) for d in outs[-1].to_dict('records')])})
|
||||
elif q["value"]:
|
||||
self._param.inputs.append({"component_id": None, "content": q["value"]})
|
||||
outs.append(pd.DataFrame([{"content": q["value"]}]))
|
||||
if outs:
|
||||
df = pd.concat(outs, ignore_index=True)
|
||||
if "content" in df: df = df.drop_duplicates(subset=['content']).reset_index(drop=True)
|
||||
@ -463,31 +469,38 @@ class ComponentBase(ABC):
|
||||
if self.component_name.lower() == "generate" and self.get_component_name(u) == "retrieval":
|
||||
o = self._canvas.get_component(u)["obj"].output(allow_partial=False)[1]
|
||||
if o is not None:
|
||||
o["component_id"] = u
|
||||
upstream_outs.append(o)
|
||||
continue
|
||||
if u not in self._canvas.get_component(self._id)["upstream"]: continue
|
||||
if self.component_name.lower()!="answer" and u not in self._canvas.get_component(self._id)["upstream"]: continue
|
||||
if self.component_name.lower().find("switch") < 0 \
|
||||
and self.get_component_name(u) in ["relevant", "categorize"]:
|
||||
continue
|
||||
if u.lower().find("answer") >= 0:
|
||||
for r, c in self._canvas.history[::-1]:
|
||||
if r == "user":
|
||||
upstream_outs.append(pd.DataFrame([{"content": c}]))
|
||||
upstream_outs.append(pd.DataFrame([{"content": c, "component_id": u}]))
|
||||
break
|
||||
break
|
||||
if self.component_name.lower().find("answer") >= 0 and self.get_component_name(u) in ["relevant"]:
|
||||
continue
|
||||
o = self._canvas.get_component(u)["obj"].output(allow_partial=False)[1]
|
||||
if o is not None:
|
||||
o["component_id"] = u
|
||||
upstream_outs.append(o)
|
||||
break
|
||||
|
||||
if upstream_outs:
|
||||
df = pd.concat(upstream_outs, ignore_index=True)
|
||||
if "content" in df:
|
||||
df = df.drop_duplicates(subset=['content']).reset_index(drop=True)
|
||||
return df
|
||||
return pd.DataFrame(self._canvas.get_history(3)[-1:])
|
||||
assert upstream_outs, "Can't inference the where the component input is."
|
||||
|
||||
df = pd.concat(upstream_outs, ignore_index=True)
|
||||
if "content" in df:
|
||||
df = df.drop_duplicates(subset=['content']).reset_index(drop=True)
|
||||
|
||||
self._param.inputs = []
|
||||
for _,r in df.iterrows():
|
||||
self._param.inputs.append({"component_id": r["component_id"], "content": r["content"]})
|
||||
|
||||
return df
|
||||
|
||||
def get_stream_input(self):
|
||||
reversed_cpnts = []
|
||||
|
@ -1,75 +0,0 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from abc import ABC
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from api.db import LLMType
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api.settings import retrievaler
|
||||
from agent.component.base import ComponentBase, ComponentParamBase
|
||||
|
||||
|
||||
class CiteParam(ComponentParamBase):
|
||||
|
||||
"""
|
||||
Define the Retrieval component parameters.
|
||||
"""
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.cite_sources = []
|
||||
|
||||
def check(self):
|
||||
self.check_empty(self.cite_source, "Please specify where you want to cite from.")
|
||||
|
||||
|
||||
class Cite(ComponentBase, ABC):
|
||||
component_name = "Cite"
|
||||
|
||||
def _run(self, history, **kwargs):
|
||||
input = "\n- ".join(self.get_input()["content"])
|
||||
sources = [self._canvas.get_component(cpn_id).output()[1] for cpn_id in self._param.cite_source]
|
||||
query = []
|
||||
for role, cnt in history[::-1][:self._param.message_history_window_size]:
|
||||
if role != "user":continue
|
||||
query.append(cnt)
|
||||
query = "\n".join(query)
|
||||
|
||||
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
|
||||
if not kbs:
|
||||
raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids))
|
||||
embd_nms = list(set([kb.embd_id for kb in kbs]))
|
||||
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
|
||||
|
||||
embd_mdl = LLMBundle(kbs[0].tenant_id, LLMType.EMBEDDING, embd_nms[0])
|
||||
|
||||
rerank_mdl = None
|
||||
if self._param.rerank_id:
|
||||
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
|
||||
|
||||
kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
|
||||
1, self._param.top_n,
|
||||
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
|
||||
aggs=False, rerank_mdl=rerank_mdl)
|
||||
|
||||
if not kbinfos["chunks"]: return pd.DataFrame()
|
||||
df = pd.DataFrame(kbinfos["chunks"])
|
||||
df["content"] = df["content_with_weight"]
|
||||
del df["content_with_weight"]
|
||||
return df
|
||||
|
||||
|
@ -101,8 +101,8 @@ class Generate(ComponentBase):
|
||||
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
|
||||
prompt = self._param.prompt
|
||||
|
||||
retrieval_res = self.get_input()
|
||||
input = (" - "+"\n - ".join([c for c in retrieval_res["content"] if isinstance(c, str)])) if "content" in retrieval_res else ""
|
||||
retrieval_res = []
|
||||
self._param.inputs = []
|
||||
for para in self._param.parameters:
|
||||
cpn = self._canvas.get_component(para["component_id"])["obj"]
|
||||
if cpn.component_name.lower() == "answer":
|
||||
@ -112,12 +112,24 @@ class Generate(ComponentBase):
|
||||
if "content" not in out.columns:
|
||||
kwargs[para["key"]] = "Nothing"
|
||||
else:
|
||||
if cpn.component_name.lower() == "retrieval":
|
||||
retrieval_res.append(out)
|
||||
kwargs[para["key"]] = " - "+"\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
|
||||
self._param.inputs.append({"component_id": para["component_id"], "content": kwargs[para["key"]]})
|
||||
|
||||
if retrieval_res:
|
||||
retrieval_res = pd.concat(retrieval_res, ignore_index=True)
|
||||
else: retrieval_res = pd.DataFrame([])
|
||||
|
||||
kwargs["input"] = input
|
||||
for n, v in kwargs.items():
|
||||
prompt = re.sub(r"\{%s\}" % re.escape(n), re.escape(str(v)), prompt)
|
||||
|
||||
if not self._param.inputs and prompt.find("{input}") >= 0:
|
||||
retrieval_res = self.get_input()
|
||||
input = (" - " + "\n - ".join(
|
||||
[c for c in retrieval_res["content"] if isinstance(c, str)])) if "content" in retrieval_res else ""
|
||||
prompt = re.sub(r"\{input\}", re.escape(input), prompt)
|
||||
|
||||
downstreams = self._canvas.get_component(self._id)["downstream"]
|
||||
if kwargs.get("stream") and len(downstreams) == 1 and self._canvas.get_component(downstreams[0])[
|
||||
"obj"].component_name.lower() == "answer":
|
||||
|
@ -50,14 +50,11 @@ class KeywordExtract(Generate, ABC):
|
||||
component_name = "KeywordExtract"
|
||||
|
||||
def _run(self, history, **kwargs):
|
||||
q = ""
|
||||
for r, c in self._canvas.history[::-1]:
|
||||
if r == "user":
|
||||
q += c
|
||||
break
|
||||
query = self.get_input()
|
||||
query = str(query["content"][0]) if "content" in query else ""
|
||||
|
||||
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
|
||||
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": q}],
|
||||
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": query}],
|
||||
self._param.gen_conf())
|
||||
|
||||
ans = re.sub(r".*keyword:", "", ans).strip()
|
||||
|
@ -396,6 +396,7 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
|
||||
rows = ["|" +
|
||||
"|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
|
||||
"|" for r in tbl["rows"]]
|
||||
rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
|
||||
if quota:
|
||||
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
|
||||
else:
|
||||
|
@ -1299,7 +1299,7 @@
|
||||
"llm": []
|
||||
},
|
||||
{
|
||||
"name": "cohere",
|
||||
"name": "Cohere",
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING, TEXT RE-RANK",
|
||||
"status": "1",
|
||||
|
@ -39,7 +39,7 @@ EmbeddingModel = {
|
||||
"NVIDIA": NvidiaEmbed,
|
||||
"LM-Studio": LmStudioEmbed,
|
||||
"OpenAI-API-Compatible": OpenAI_APIEmbed,
|
||||
"cohere": CoHereEmbed,
|
||||
"Cohere": CoHereEmbed,
|
||||
"TogetherAI": TogetherAIEmbed,
|
||||
"PerfXCloud": PerfXCloudEmbed,
|
||||
"Upstage": UpstageEmbed,
|
||||
@ -92,7 +92,7 @@ ChatModel = {
|
||||
"NVIDIA": NvidiaChat,
|
||||
"LM-Studio": LmStudioChat,
|
||||
"OpenAI-API-Compatible": OpenAI_APIChat,
|
||||
"cohere": CoHereChat,
|
||||
"Cohere": CoHereChat,
|
||||
"LeptonAI": LeptonAIChat,
|
||||
"TogetherAI": TogetherAIChat,
|
||||
"PerfXCloud": PerfXCloudChat,
|
||||
@ -117,7 +117,7 @@ RerankModel = {
|
||||
"NVIDIA": NvidiaRerank,
|
||||
"LM-Studio": LmStudioRerank,
|
||||
"OpenAI-API-Compatible": OpenAI_APIRerank,
|
||||
"cohere": CoHereRerank,
|
||||
"Cohere": CoHereRerank,
|
||||
"TogetherAI": TogetherAIRerank,
|
||||
"SILICONFLOW": SILICONFLOWRerank,
|
||||
"BaiduYiyan": BaiduYiyanRerank,
|
||||
|
@ -394,6 +394,7 @@ class VoyageRerank(Base):
|
||||
rank[r.index] = r.relevance_score
|
||||
return rank, res.total_tokens
|
||||
|
||||
|
||||
class QWenRerank(Base):
|
||||
def __init__(self, key, model_name='gte-rerank', base_url=None, **kwargs):
|
||||
import dashscope
|
||||
|
Loading…
x
Reference in New Issue
Block a user