mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-12 23:19:03 +08:00
truncate text to fitin embedding model (#692)
### What problem does this PR solve? ### Type of change - [x] Refactoring
This commit is contained in:
parent
bca63ad571
commit
4153a36683
@ -27,8 +27,7 @@ import torch
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from api.utils.file_utils import get_project_base_directory, get_home_cache_dir
|
from api.utils.file_utils import get_project_base_directory, get_home_cache_dir
|
||||||
from rag.utils import num_tokens_from_string
|
from rag.utils import num_tokens_from_string, truncate
|
||||||
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
flag_model = FlagModel(os.path.join(get_home_cache_dir(), "bge-large-zh-v1.5"),
|
flag_model = FlagModel(os.path.join(get_home_cache_dir(), "bge-large-zh-v1.5"),
|
||||||
@ -70,7 +69,7 @@ class DefaultEmbedding(Base):
|
|||||||
self.model = flag_model
|
self.model = flag_model
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=32):
|
||||||
texts = [t[:2000] for t in texts]
|
texts = [truncate(t, 2048) for t in texts]
|
||||||
token_count = 0
|
token_count = 0
|
||||||
for t in texts:
|
for t in texts:
|
||||||
token_count += num_tokens_from_string(t)
|
token_count += num_tokens_from_string(t)
|
||||||
@ -93,12 +92,14 @@ class OpenAIEmbed(Base):
|
|||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=32):
|
||||||
|
texts = [truncate(t, 8196) for t in texts]
|
||||||
res = self.client.embeddings.create(input=texts,
|
res = self.client.embeddings.create(input=texts,
|
||||||
model=self.model_name)
|
model=self.model_name)
|
||||||
return np.array([d.embedding for d in res.data]), res.usage.total_tokens
|
return np.array([d.embedding for d in res.data]
|
||||||
|
), res.usage.total_tokens
|
||||||
|
|
||||||
def encode_queries(self, text):
|
def encode_queries(self, text):
|
||||||
res = self.client.embeddings.create(input=[text],
|
res = self.client.embeddings.create(input=[truncate(text, 8196)],
|
||||||
model=self.model_name)
|
model=self.model_name)
|
||||||
return np.array(res.data[0].embedding), res.usage.total_tokens
|
return np.array(res.data[0].embedding), res.usage.total_tokens
|
||||||
|
|
||||||
@ -112,7 +113,7 @@ class QWenEmbed(Base):
|
|||||||
import dashscope
|
import dashscope
|
||||||
res = []
|
res = []
|
||||||
token_count = 0
|
token_count = 0
|
||||||
texts = [txt[:2048] for txt in texts]
|
texts = [truncate(t, 2048) for t in texts]
|
||||||
for i in range(0, len(texts), batch_size):
|
for i in range(0, len(texts), batch_size):
|
||||||
resp = dashscope.TextEmbedding.call(
|
resp = dashscope.TextEmbedding.call(
|
||||||
model=self.model_name,
|
model=self.model_name,
|
||||||
|
@ -63,3 +63,7 @@ def num_tokens_from_string(string: str) -> int:
|
|||||||
num_tokens = len(encoder.encode(string))
|
num_tokens = len(encoder.encode(string))
|
||||||
return num_tokens
|
return num_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def truncate(string: str, max_len: int) -> int:
|
||||||
|
"""Returns truncated text if the length of text exceed max_len."""
|
||||||
|
return encoder.decode(encoder.encode(string)[:max_len])
|
||||||
|
Loading…
x
Reference in New Issue
Block a user