Robust for abnormal response from LLMs. (#4747)

### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
This commit is contained in:
Kevin Hu 2025-02-06 17:34:53 +08:00 committed by GitHub
parent e786f596e2
commit 448fa1c4d4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 9 additions and 5 deletions

View File

@ -75,6 +75,8 @@ class CommunityReportsExtractor(Extractor):
ent_df["entity"] = ent_df["entity_name"]
del ent_df["entity_name"]
rela_df = pd.DataFrame(self._get_relation_(list(ent_df["entity"]), list(ent_df["entity"]), 10000))
if rela_df.empty:
continue
rela_df["source"] = rela_df["src_id"]
rela_df["target"] = rela_df["tgt_id"]
del rela_df["src_id"]

View File

@ -154,7 +154,6 @@ class KGSearch(Dealer):
tenant_ids = tenant_ids.split(",")
idxnms = [index_name(tid) for tid in tenant_ids]
ty_kwds = []
ents = []
try:
ty_kwds, ents = self.query_rewrite(llm, qst, [index_name(tid) for tid in tenant_ids], kb_ids)
logging.info(f"Q: {qst}, Types: {ty_kwds}, Entities: {ents}")
@ -169,6 +168,9 @@ class KGSearch(Dealer):
nhop_pathes = defaultdict(dict)
for _, ent in ents_from_query.items():
nhops = ent.get("n_hop_ents", [])
if not isinstance(nhops, list):
logging.warning(f"Abnormal n_hop_ents: {nhops}")
continue
for nbr in nhops:
path = nbr["path"]
wts = nbr["weights"]
@ -246,7 +248,7 @@ class KGSearch(Dealer):
"From Entity": f,
"To Entity": t,
"Score": "%.2f" % (rel["sim"] * rel["pagerank"]),
"Description": json.loads(ent["description"]).get("description", "")
"Description": json.loads(rel["description"]).get("description", "")
})
max_token -= num_tokens_from_string(str(relas[-1]))
if max_token <= 0:

View File

@ -388,14 +388,14 @@ class Dealer:
break
id = sres.ids[i]
chunk = sres.field[id]
dnm = chunk["docnm_kwd"]
did = chunk["doc_id"]
dnm = chunk.get("docnm_kwd", "")
did = chunk.get("doc_id", "")
position_int = chunk.get("position_int", [])
d = {
"chunk_id": id,
"content_ltks": chunk["content_ltks"],
"content_with_weight": chunk["content_with_weight"],
"doc_id": chunk["doc_id"],
"doc_id": did,
"docnm_kwd": dnm,
"kb_id": chunk["kb_id"],
"important_kwd": chunk.get("important_kwd", []),