refine upload & parse (#1969)

### What problem does this PR solve?


### Type of change
- [x] Refactoring
This commit is contained in:
Kevin Hu 2024-08-15 19:30:43 +08:00 committed by GitHub
parent d92e927685
commit 4810cb2dc9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 177 additions and 132 deletions

View File

@ -26,7 +26,7 @@ from api.db.db_models import APIToken, API4Conversation, Task, File
from api.db.services import duplicate_name
from api.db.services.api_service import APITokenService, API4ConversationService
from api.db.services.dialog_service import DialogService, chat
from api.db.services.document_service import DocumentService
from api.db.services.document_service import DocumentService, doc_upload_and_parse
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
@ -470,6 +470,29 @@ def upload():
return get_json_result(data=doc_result.to_json())
@manager.route('/document/upload_and_parse', methods=['POST'])
@validate_request("conversation_id")
def upload_parse():
token = request.headers.get('Authorization').split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
if 'file' not in request.files:
return get_json_result(
data=False, retmsg='No file part!', retcode=RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
for file_obj in file_objs:
if file_obj.filename == '':
return get_json_result(
data=False, retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR)
doc_ids = doc_upload_and_parse(request.form.get("conversation_id"), file_objs, objs[0].tenant_id)
return get_json_result(data=doc_ids)
@manager.route('/list_chunks', methods=['POST'])
# @login_required
def list_chunks():
@ -560,7 +583,6 @@ def document_rm():
tenant_id = objs[0].tenant_id
req = request.json
doc_ids = []
try:
doc_ids = [DocumentService.get_doc_id_by_doc_name(doc_name) for doc_name in req.get("doc_names", [])]
for doc_id in req.get("doc_ids", []):

View File

@ -45,7 +45,7 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.db import FileType, TaskStatus, ParserType, FileSource, LLMType
from api.db.services.document_service import DocumentService
from api.db.services.document_service import DocumentService, doc_upload_and_parse
from api.settings import RetCode, stat_logger
from api.utils.api_utils import get_json_result
from rag.utils.minio_conn import MINIO
@ -75,7 +75,7 @@ def upload():
if not e:
raise LookupError("Can't find this knowledgebase!")
err, _ = FileService.upload_document(kb, file_objs)
err, _ = FileService.upload_document(kb, file_objs, current_user.id)
if err:
return get_json_result(
data=False, retmsg="\n".join(err), retcode=RetCode.SERVER_ERROR)
@ -212,7 +212,7 @@ def docinfos():
@manager.route('/thumbnails', methods=['GET'])
@login_required
#@login_required
def thumbnails():
doc_ids = request.args.get("doc_ids").split(",")
if not doc_ids:
@ -460,7 +460,6 @@ def get_image(image_id):
@login_required
@validate_request("conversation_id")
def upload_and_parse():
from rag.app import presentation, picture, naive, audio, email
if 'file' not in request.files:
return get_json_result(
data=False, retmsg='No file part!', retcode=RetCode.ARGUMENT_ERROR)
@ -471,124 +470,6 @@ def upload_and_parse():
return get_json_result(
data=False, retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR)
e, conv = ConversationService.get_by_id(request.form.get("conversation_id"))
if not e:
return get_data_error_result(retmsg="Conversation not found!")
e, dia = DialogService.get_by_id(conv.dialog_id)
kb_id = dia.kb_ids[0]
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
doc_ids = doc_upload_and_parse(request.form.get("conversation_id"), file_objs, current_user.id)
idxnm = search.index_name(kb.tenant_id)
if not ELASTICSEARCH.indexExist(idxnm):
ELASTICSEARCH.createIdx(idxnm, json.load(
open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
err, files = FileService.upload_document(kb, file_objs)
if err:
return get_json_result(
data=False, retmsg="\n".join(err), retcode=RetCode.SERVER_ERROR)
def dummy(prog=None, msg=""):
pass
FACTORY = {
ParserType.PRESENTATION.value: presentation,
ParserType.PICTURE.value: picture,
ParserType.AUDIO.value: audio,
ParserType.EMAIL.value: email
}
parser_config = {"chunk_token_num": 4096, "delimiter": "\n!?;。;!?", "layout_recognize": False}
exe = ThreadPoolExecutor(max_workers=12)
threads = []
for d, blob in files:
kwargs = {
"callback": dummy,
"parser_config": parser_config,
"from_page": 0,
"to_page": 100000,
"tenant_id": kb.tenant_id,
"lang": kb.language
}
threads.append(exe.submit(FACTORY.get(d["parser_id"], naive).chunk, d["name"], blob, **kwargs))
for (docinfo,_), th in zip(files, threads):
docs = []
doc = {
"doc_id": docinfo["id"],
"kb_id": [kb.id]
}
for ck in th.result():
d = deepcopy(doc)
d.update(ck)
md5 = hashlib.md5()
md5.update((ck["content_with_weight"] +
str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
if not d.get("image"):
docs.append(d)
continue
output_buffer = BytesIO()
if isinstance(d["image"], bytes):
output_buffer = BytesIO(d["image"])
else:
d["image"].save(output_buffer, format='JPEG')
MINIO.put(kb.id, d["_id"], output_buffer.getvalue())
d["img_id"] = "{}-{}".format(kb.id, d["_id"])
del d["image"]
docs.append(d)
parser_ids = {d["id"]: d["parser_id"] for d, _ in files}
docids = [d["id"] for d, _ in files]
chunk_counts = {id: 0 for id in docids}
token_counts = {id: 0 for id in docids}
es_bulk_size = 64
def embedding(doc_id, cnts, batch_size=16):
nonlocal embd_mdl, chunk_counts, token_counts
vects = []
for i in range(0, len(cnts), batch_size):
vts, c = embd_mdl.encode(cnts[i: i + batch_size])
vects.extend(vts.tolist())
chunk_counts[doc_id] += len(cnts[i:i + batch_size])
token_counts[doc_id] += c
return vects
_, tenant = TenantService.get_by_id(kb.tenant_id)
llm_bdl = LLMBundle(kb.tenant_id, LLMType.CHAT, tenant.llm_id)
for doc_id in docids:
cks = [c for c in docs if c["doc_id"] == doc_id]
if False and parser_ids[doc_id] != ParserType.PICTURE.value:
mindmap = MindMapExtractor(llm_bdl)
try:
mind_map = json.dumps(mindmap([c["content_with_weight"] for c in docs if c["doc_id"] == doc_id]).output, ensure_ascii=False, indent=2)
if len(mind_map) < 32: raise Exception("Few content: "+mind_map)
cks.append({
"doc_id": doc_id,
"kb_id": [kb.id],
"content_with_weight": mind_map,
"knowledge_graph_kwd": "mind_map"
})
except Exception as e:
stat_logger.error("Mind map generation error:", traceback.format_exc())
vects = embedding(doc_id, [c["content_with_weight"] for c in cks])
assert len(cks) == len(vects)
for i, d in enumerate(cks):
v = vects[i]
d["q_%d_vec" % len(v)] = v
for b in range(0, len(cks), es_bulk_size):
ELASTICSEARCH.bulk(cks[b:b + es_bulk_size], idxnm)
DocumentService.increment_chunk_num(
doc_id, kb.id, token_counts[doc_id], chunk_counts[doc_id], 0)
return get_json_result(data=[d["id"] for d,_ in files])
return get_json_result(data=doc_ids)

View File

@ -13,20 +13,29 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import hashlib
import json
import os
import random
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
from datetime import datetime
from io import BytesIO
from elasticsearch_dsl import Q
from peewee import fn
from api.db.db_utils import bulk_insert_into_db
from api.settings import stat_logger
from api.utils import current_timestamp, get_format_time, get_uuid
from api.utils.file_utils import get_project_base_directory
from graphrag.mind_map_extractor import MindMapExtractor
from rag.settings import SVR_QUEUE_NAME
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils.minio_conn import MINIO
from rag.nlp import search
from api.db import FileType, TaskStatus, ParserType
from api.db import FileType, TaskStatus, ParserType, LLMType
from api.db.db_models import DB, Knowledgebase, Tenant, Task
from api.db.db_models import Document
from api.db.services.common_service import CommonService
@ -380,3 +389,136 @@ def queue_raptor_tasks(doc):
bulk_insert_into_db(Task, [task], True)
task["type"] = "raptor"
assert REDIS_CONN.queue_product(SVR_QUEUE_NAME, message=task), "Can't access Redis. Please check the Redis' status."
def doc_upload_and_parse(conversation_id, file_objs, user_id):
from rag.app import presentation, picture, naive, audio, email
from api.db.services.dialog_service import ConversationService, DialogService
from api.db.services.file_service import FileService
from api.db.services.llm_service import LLMBundle
from api.db.services.user_service import TenantService
from api.db.services.api_service import API4ConversationService
e, conv = ConversationService.get_by_id(conversation_id)
if not e:
e, conv = API4ConversationService.get_by_id(conversation_id)
assert e, "Conversation not found!"
e, dia = DialogService.get_by_id(conv.dialog_id)
kb_id = dia.kb_ids[0]
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
idxnm = search.index_name(kb.tenant_id)
if not ELASTICSEARCH.indexExist(idxnm):
ELASTICSEARCH.createIdx(idxnm, json.load(
open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
err, files = FileService.upload_document(kb, file_objs, user_id)
assert not err, "\n".join(err)
def dummy(prog=None, msg=""):
pass
FACTORY = {
ParserType.PRESENTATION.value: presentation,
ParserType.PICTURE.value: picture,
ParserType.AUDIO.value: audio,
ParserType.EMAIL.value: email
}
parser_config = {"chunk_token_num": 4096, "delimiter": "\n!?;。;!?", "layout_recognize": False}
exe = ThreadPoolExecutor(max_workers=12)
threads = []
for d, blob in files:
kwargs = {
"callback": dummy,
"parser_config": parser_config,
"from_page": 0,
"to_page": 100000,
"tenant_id": kb.tenant_id,
"lang": kb.language
}
threads.append(exe.submit(FACTORY.get(d["parser_id"], naive).chunk, d["name"], blob, **kwargs))
for (docinfo, _), th in zip(files, threads):
docs = []
doc = {
"doc_id": docinfo["id"],
"kb_id": [kb.id]
}
for ck in th.result():
d = deepcopy(doc)
d.update(ck)
md5 = hashlib.md5()
md5.update((ck["content_with_weight"] +
str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.now().timestamp()
if not d.get("image"):
docs.append(d)
continue
output_buffer = BytesIO()
if isinstance(d["image"], bytes):
output_buffer = BytesIO(d["image"])
else:
d["image"].save(output_buffer, format='JPEG')
MINIO.put(kb.id, d["_id"], output_buffer.getvalue())
d["img_id"] = "{}-{}".format(kb.id, d["_id"])
del d["image"]
docs.append(d)
parser_ids = {d["id"]: d["parser_id"] for d, _ in files}
docids = [d["id"] for d, _ in files]
chunk_counts = {id: 0 for id in docids}
token_counts = {id: 0 for id in docids}
es_bulk_size = 64
def embedding(doc_id, cnts, batch_size=16):
nonlocal embd_mdl, chunk_counts, token_counts
vects = []
for i in range(0, len(cnts), batch_size):
vts, c = embd_mdl.encode(cnts[i: i + batch_size])
vects.extend(vts.tolist())
chunk_counts[doc_id] += len(cnts[i:i + batch_size])
token_counts[doc_id] += c
return vects
_, tenant = TenantService.get_by_id(kb.tenant_id)
llm_bdl = LLMBundle(kb.tenant_id, LLMType.CHAT, tenant.llm_id)
for doc_id in docids:
cks = [c for c in docs if c["doc_id"] == doc_id]
if parser_ids[doc_id] != ParserType.PICTURE.value:
mindmap = MindMapExtractor(llm_bdl)
try:
mind_map = json.dumps(mindmap([c["content_with_weight"] for c in docs if c["doc_id"] == doc_id]).output,
ensure_ascii=False, indent=2)
if len(mind_map) < 32: raise Exception("Few content: " + mind_map)
cks.append({
"id": get_uuid(),
"doc_id": doc_id,
"kb_id": [kb.id],
"content_with_weight": mind_map,
"knowledge_graph_kwd": "mind_map"
})
except Exception as e:
stat_logger.error("Mind map generation error:", traceback.format_exc())
vects = embedding(doc_id, [c["content_with_weight"] for c in cks])
assert len(cks) == len(vects)
for i, d in enumerate(cks):
v = vects[i]
d["q_%d_vec" % len(v)] = v
for b in range(0, len(cks), es_bulk_size):
ELASTICSEARCH.bulk(cks[b:b + es_bulk_size], idxnm)
DocumentService.increment_chunk_num(
doc_id, kb.id, token_counts[doc_id], chunk_counts[doc_id], 0)
return [d["id"] for d,_ in files]

View File

@ -327,11 +327,11 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def upload_document(self, kb, file_objs):
root_folder = self.get_root_folder(current_user.id)
def upload_document(self, kb, file_objs, user_id):
root_folder = self.get_root_folder(user_id)
pf_id = root_folder["id"]
self.init_knowledgebase_docs(pf_id, current_user.id)
kb_root_folder = self.get_kb_folder(current_user.id)
self.init_knowledgebase_docs(pf_id, user_id)
kb_root_folder = self.get_kb_folder(user_id)
kb_folder = self.new_a_file_from_kb(kb.tenant_id, kb.name, kb_root_folder["id"])
err, files = [], []
@ -359,7 +359,7 @@ class FileService(CommonService):
"kb_id": kb.id,
"parser_id": kb.parser_id,
"parser_config": kb.parser_config,
"created_by": current_user.id,
"created_by": user_id,
"type": filetype,
"name": filename,
"location": location,