mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-06-04 03:13:58 +08:00
llm configuation refine and trievalTest API refine (#40)
This commit is contained in:
parent
f3dd131403
commit
484e5abc1f
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -13,6 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import datetime
|
||||
|
||||
from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
@ -177,6 +178,7 @@ def create():
|
||||
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
||||
d["important_kwd"] = req.get("important_kwd", [])
|
||||
d["important_tks"] = huqie.qie(" ".join(req.get("important_kwd", [])))
|
||||
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
||||
|
||||
try:
|
||||
e, doc = DocumentService.get_by_id(req["doc_id"])
|
||||
@ -223,7 +225,7 @@ def retrieval_test():
|
||||
embd_mdl = TenantLLMService.model_instance(
|
||||
kb.tenant_id, LLMType.EMBEDDING.value)
|
||||
ranks = retrievaler.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size, similarity_threshold,
|
||||
vector_similarity_weight, top, doc_ids)
|
||||
vector_similarity_weight, top, doc_ids)
|
||||
|
||||
return get_json_result(data=ranks)
|
||||
except Exception as e:
|
||||
@ -231,4 +233,3 @@ def retrieval_test():
|
||||
return get_json_result(data=False, retmsg=f'Index not found!',
|
||||
retcode=RetCode.DATA_ERROR)
|
||||
return server_error_response(e)
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -13,22 +13,16 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import re
|
||||
|
||||
import tiktoken
|
||||
from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
from flask_login import login_required
|
||||
from api.db.services.dialog_service import DialogService, ConversationService
|
||||
from api.db import StatusEnum, LLMType
|
||||
from api.db.services.kb_service import KnowledgebaseService
|
||||
from api.db import LLMType
|
||||
from api.db.services.llm_service import LLMService, TenantLLMService
|
||||
from api.db.services.user_service import TenantService
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from api.utils import get_uuid
|
||||
from api.utils.api_utils import get_json_result
|
||||
from rag.llm import ChatModel
|
||||
from rag.nlp import retrievaler
|
||||
from rag.nlp.query import EsQueryer
|
||||
from rag.utils import num_tokens_from_string, encoder
|
||||
|
||||
|
||||
@ -142,6 +136,27 @@ def message_fit_in(msg, max_length=4000):
|
||||
return max_length, msg
|
||||
|
||||
|
||||
@manager.route('/completion', methods=['POST'])
|
||||
@login_required
|
||||
@validate_request("dialog_id", "messages")
|
||||
def completion():
|
||||
req = request.json
|
||||
msg = []
|
||||
for m in req["messages"]:
|
||||
if m["role"] == "system":continue
|
||||
if m["role"] == "assistant" and not msg:continue
|
||||
msg.append({"role": m["role"], "content": m["content"]})
|
||||
try:
|
||||
e, dia = DialogService.get_by_id(req["dialog_id"])
|
||||
if not e:
|
||||
return get_data_error_result(retmsg="Dialog not found!")
|
||||
del req["dialog_id"]
|
||||
del req["messages"]
|
||||
return get_json_result(data=chat(dia, msg, **req))
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
def chat(dialog, messages, **kwargs):
|
||||
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
|
||||
llm = LLMService.query(llm_name=dialog.llm_id)
|
||||
@ -156,7 +171,7 @@ def chat(dialog, messages, **kwargs):
|
||||
prompt_config["system"] = prompt_config["system"].replace("{%s}"%p["key"], " ")
|
||||
|
||||
model_config = TenantLLMService.get_api_key(dialog.tenant_id, LLMType.CHAT.value, dialog.llm_id)
|
||||
if not model_config: raise LookupError("LLM(%s) API key not found"%dialog.llm_id)
|
||||
if not model_config: raise LookupError("LLM({}) API key not found".format(dialog.llm_id))
|
||||
|
||||
question = messages[-1]["content"]
|
||||
embd_mdl = TenantLLMService.model_instance(
|
||||
@ -183,25 +198,4 @@ def chat(dialog, messages, **kwargs):
|
||||
embd_mdl,
|
||||
tkweight=1-dialog.vector_similarity_weight,
|
||||
vtweight=dialog.vector_similarity_weight)
|
||||
return {"answer": answer, "retrieval": kbinfos}
|
||||
|
||||
|
||||
@manager.route('/completion', methods=['POST'])
|
||||
@login_required
|
||||
@validate_request("dialog_id", "messages")
|
||||
def completion():
|
||||
req = request.json
|
||||
msg = []
|
||||
for m in req["messages"]:
|
||||
if m["role"] == "system":continue
|
||||
if m["role"] == "assistant" and not msg:continue
|
||||
msg.append({"role": m["role"], "content": m["content"]})
|
||||
try:
|
||||
e, dia = DialogService.get_by_id(req["dialog_id"])
|
||||
if not e:
|
||||
return get_data_error_result(retmsg="Dialog not found!")
|
||||
del req["dialog_id"]
|
||||
del req["messages"]
|
||||
return get_json_result(data=chat(dia, msg, **req))
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
return {"answer": answer, "retrieval": kbinfos}
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -71,18 +71,12 @@ def my_llms():
|
||||
def list():
|
||||
try:
|
||||
objs = TenantLLMService.query(tenant_id=current_user.id)
|
||||
objs = [o.to_dict() for o in objs if o.api_key]
|
||||
fct = {}
|
||||
for o in objs:
|
||||
if o["llm_factory"] not in fct: fct[o["llm_factory"]] = []
|
||||
if o["llm_name"]: fct[o["llm_factory"]].append(o["llm_name"])
|
||||
|
||||
mdlnms = set([o.to_dict()["llm_name"] for o in objs if o.api_key])
|
||||
llms = LLMService.get_all()
|
||||
llms = [m.to_dict() for m in llms if m.status == StatusEnum.VALID.value]
|
||||
for m in llms:
|
||||
m["available"] = False
|
||||
if m["fid"] in fct and (not fct[m["fid"]] or m["llm_name"] in fct[m["fid"]]):
|
||||
m["available"] = True
|
||||
m["available"] = m.llm_name in mdlnms
|
||||
|
||||
res = {}
|
||||
for m in llms:
|
||||
if m["fid"] not in res: res[m["fid"]] = []
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -13,12 +13,14 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import re
|
||||
|
||||
from flask import request, session, redirect, url_for
|
||||
from werkzeug.security import generate_password_hash, check_password_hash
|
||||
from flask_login import login_required, current_user, login_user, logout_user
|
||||
|
||||
from api.db.db_models import TenantLLM
|
||||
from api.db.services.llm_service import TenantLLMService
|
||||
from api.db.services.llm_service import TenantLLMService, LLMService
|
||||
from api.utils.api_utils import server_error_response, validate_request
|
||||
from api.utils import get_uuid, get_format_time, decrypt, download_img
|
||||
from api.db import UserTenantRole, LLMType
|
||||
@ -185,8 +187,6 @@ def rollback_user_registration(user_id):
|
||||
|
||||
|
||||
def user_register(user_id, user):
|
||||
|
||||
user_id = get_uuid()
|
||||
user["id"] = user_id
|
||||
tenant = {
|
||||
"id": user_id,
|
||||
@ -203,12 +203,14 @@ def user_register(user_id, user):
|
||||
"invited_by": user_id,
|
||||
"role": UserTenantRole.OWNER
|
||||
}
|
||||
tenant_llm = {"tenant_id": user_id, "llm_factory": "OpenAI", "api_key": "infiniflow API Key"}
|
||||
tenant_llm = []
|
||||
for llm in LLMService.query(fid="Infiniflow"):
|
||||
tenant_llm.append({"tenant_id": user_id, "llm_factory": "Infiniflow", "llm_name": llm.llm_name, "model_type":llm.model_type, "api_key": "infiniflow API Key"})
|
||||
|
||||
if not UserService.save(**user):return
|
||||
TenantService.save(**tenant)
|
||||
UserTenantService.save(**usr_tenant)
|
||||
TenantLLMService.save(**tenant_llm)
|
||||
TenantLLMService.insert_many(tenant_llm)
|
||||
return UserService.query(email=user["email"])
|
||||
|
||||
|
||||
@ -218,6 +220,9 @@ def user_add():
|
||||
req = request.json
|
||||
if UserService.query(email=req["email"]):
|
||||
return get_json_result(data=False, retmsg=f'Email: {req["email"]} has already registered!', retcode=RetCode.OPERATING_ERROR)
|
||||
if not re.match(r"^[\w\._-]+@([\w_-]+\.)+[\w-]{2,4}$", req["email"]):
|
||||
return get_json_result(data=False, retmsg=f'Invaliad e-mail: {req["email"]}!',
|
||||
retcode=RetCode.OPERATING_ERROR)
|
||||
|
||||
user_dict = {
|
||||
"access_token": get_uuid(),
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -426,8 +426,8 @@ class LLMFactories(DataBaseModel):
|
||||
|
||||
|
||||
class LLM(DataBaseModel):
|
||||
# defautlt LLMs for every users
|
||||
llm_name = CharField(max_length=128, null=False, help_text="LLM name", primary_key=True)
|
||||
# LLMs dictionary
|
||||
llm_name = CharField(max_length=128, null=False, help_text="LLM name", index=True)
|
||||
model_type = CharField(max_length=128, null=False, help_text="LLM, Text Embedding, Image2Text, ASR")
|
||||
fid = CharField(max_length=128, null=False, help_text="LLM factory id")
|
||||
max_tokens = IntegerField(default=0)
|
||||
@ -448,6 +448,7 @@ class TenantLLM(DataBaseModel):
|
||||
llm_name = CharField(max_length=128, null=True, help_text="LLM name", default="")
|
||||
api_key = CharField(max_length=255, null=True, help_text="API KEY")
|
||||
api_base = CharField(max_length=255, null=True, help_text="API Base")
|
||||
used_tokens = IntegerField(default=0)
|
||||
|
||||
def __str__(self):
|
||||
return self.llm_name
|
||||
@ -468,8 +469,8 @@ class Knowledgebase(DataBaseModel):
|
||||
doc_num = IntegerField(default=0)
|
||||
token_num = IntegerField(default=0)
|
||||
chunk_num = IntegerField(default=0)
|
||||
#similarity_threshold = FloatField(default=0.4)
|
||||
#vector_similarity_weight = FloatField(default=0.3)
|
||||
similarity_threshold = FloatField(default=0.4)
|
||||
vector_similarity_weight = FloatField(default=0.3)
|
||||
|
||||
parser_id = CharField(max_length=32, null=False, help_text="default parser ID")
|
||||
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted,1: validate)", default="1")
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -46,6 +46,11 @@ def init_llm_factory():
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
||||
"status": "1",
|
||||
},{
|
||||
"name": "Infiniflow",
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
||||
"status": "1",
|
||||
},{
|
||||
"name": "智普AI",
|
||||
"logo": "",
|
||||
@ -130,6 +135,30 @@ def init_llm_factory():
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT",
|
||||
"max_tokens": 765,
|
||||
"model_type": LLMType.IMAGE2TEXT.value
|
||||
},{
|
||||
"fid": factory_infos[2]["name"],
|
||||
"llm_name": "gpt-3.5-turbo",
|
||||
"tags": "LLM,CHAT,4K",
|
||||
"max_tokens": 4096,
|
||||
"model_type": LLMType.CHAT.value
|
||||
},{
|
||||
"fid": factory_infos[2]["name"],
|
||||
"llm_name": "text-embedding-ada-002",
|
||||
"tags": "TEXT EMBEDDING,8K",
|
||||
"max_tokens": 8191,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
},{
|
||||
"fid": factory_infos[2]["name"],
|
||||
"llm_name": "whisper-1",
|
||||
"tags": "SPEECH2TEXT",
|
||||
"max_tokens": 25*1024*1024,
|
||||
"model_type": LLMType.SPEECH2TEXT.value
|
||||
},{
|
||||
"fid": factory_infos[2]["name"],
|
||||
"llm_name": "gpt-4-vision-preview",
|
||||
"tags": "LLM,CHAT,IMAGE2TEXT",
|
||||
"max_tokens": 765,
|
||||
"model_type": LLMType.IMAGE2TEXT.value
|
||||
},
|
||||
]
|
||||
for info in factory_infos:
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -13,6 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from api.db.services.user_service import TenantService
|
||||
from rag.llm import EmbeddingModel, CvModel
|
||||
from api.db import LLMType
|
||||
from api.db.db_models import DB, UserTenant
|
||||
@ -34,40 +35,39 @@ class TenantLLMService(CommonService):
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_api_key(cls, tenant_id, model_type, model_name=""):
|
||||
objs = cls.query(tenant_id=tenant_id, model_type=model_type)
|
||||
if objs and len(objs)>0 and objs[0].llm_name:
|
||||
return objs[0]
|
||||
|
||||
fields = [LLM.llm_name, cls.model.llm_factory, cls.model.api_key]
|
||||
objs = cls.model.select(*fields).join(LLM, on=(LLM.fid == cls.model.llm_factory)).where(
|
||||
(cls.model.tenant_id == tenant_id),
|
||||
((cls.model.model_type == model_type) | (cls.model.llm_name == model_name)),
|
||||
(LLM.status == StatusEnum.VALID)
|
||||
)
|
||||
|
||||
if not objs:return
|
||||
def get_api_key(cls, tenant_id, model_name):
|
||||
objs = cls.query(tenant_id=tenant_id, llm_name=model_name)
|
||||
if not objs: return
|
||||
return objs[0]
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_my_llms(cls, tenant_id):
|
||||
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name]
|
||||
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory==LLMFactories.name)).where(cls.model.tenant_id==tenant_id).dicts()
|
||||
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
|
||||
cls.model.tenant_id == tenant_id).dicts()
|
||||
|
||||
return list(objs)
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def model_instance(cls, tenant_id, llm_type):
|
||||
model_config = cls.get_api_key(tenant_id, model_type=LLMType.EMBEDDING.value)
|
||||
if not model_config:
|
||||
model_config = {"llm_factory": "local", "api_key": "", "llm_name": ""}
|
||||
else:
|
||||
model_config = model_config[0].to_dict()
|
||||
if llm_type == LLMType.EMBEDDING:
|
||||
e,tenant = TenantService.get_by_id(tenant_id)
|
||||
if not e: raise LookupError("Tenant not found")
|
||||
|
||||
if llm_type == LLMType.EMBEDDING.value: mdlnm = tenant.embd_id
|
||||
elif llm_type == LLMType.SPEECH2TEXT.value: mdlnm = tenant.asr_id
|
||||
elif llm_type == LLMType.IMAGE2TEXT.value: mdlnm = tenant.img2txt_id
|
||||
elif llm_type == LLMType.CHAT.value: mdlnm = tenant.llm_id
|
||||
else: assert False, "LLM type error"
|
||||
|
||||
model_config = cls.get_api_key(tenant_id, mdlnm)
|
||||
if not model_config: raise LookupError("Model({}) not found".format(mdlnm))
|
||||
model_config = model_config[0].to_dict()
|
||||
if llm_type == LLMType.EMBEDDING.value:
|
||||
if model_config["llm_factory"] not in EmbeddingModel: return
|
||||
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"])
|
||||
if llm_type == LLMType.IMAGE2TEXT:
|
||||
|
||||
if llm_type == LLMType.IMAGE2TEXT.value:
|
||||
if model_config["llm_factory"] not in CvModel: return
|
||||
return CvModel[model_config.llm_factory](model_config["api_key"], model_config["llm_name"])
|
||||
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"])
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -19,7 +19,7 @@ from .cv_model import *
|
||||
|
||||
|
||||
EmbeddingModel = {
|
||||
"local": HuEmbedding,
|
||||
"Infiniflow": HuEmbedding,
|
||||
"OpenAI": OpenAIEmbed,
|
||||
"通义千问": QWenEmbed,
|
||||
}
|
||||
@ -27,12 +27,14 @@ EmbeddingModel = {
|
||||
|
||||
CvModel = {
|
||||
"OpenAI": GptV4,
|
||||
"Infiniflow": GptV4,
|
||||
"通义千问": QWenCV,
|
||||
}
|
||||
|
||||
|
||||
ChatModel = {
|
||||
"OpenAI": GptTurbo,
|
||||
"Infiniflow": GptTurbo,
|
||||
"通义千问": QWenChat,
|
||||
}
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -24,6 +24,9 @@ import numpy as np
|
||||
|
||||
from rag.utils import num_tokens_from_string
|
||||
|
||||
flag_model = FlagModel("BAAI/bge-large-zh-v1.5",
|
||||
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
||||
use_fp16=torch.cuda.is_available())
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name):
|
||||
@ -47,9 +50,7 @@ class HuEmbedding(Base):
|
||||
^_-
|
||||
|
||||
"""
|
||||
self.model = FlagModel("BAAI/bge-large-zh-v1.5",
|
||||
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
||||
use_fp16=torch.cuda.is_available())
|
||||
self.model = flag_model
|
||||
|
||||
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
|
@ -42,7 +42,7 @@ class EsQueryer:
|
||||
|
||||
def question(self, txt, tbl="qa", min_match="60%"):
|
||||
txt = re.sub(
|
||||
r"[ \t,,。??/`!!&]+",
|
||||
r"[ \r\n\t,,。??/`!!&]+",
|
||||
" ",
|
||||
huqie.tradi2simp(
|
||||
huqie.strQ2B(
|
||||
|
@ -1,4 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import fitz
|
||||
import xgboost as xgb
|
||||
from io import BytesIO
|
||||
import torch
|
||||
@ -1527,8 +1528,6 @@ class HuParser:
|
||||
return "\n\n".join(res)
|
||||
|
||||
def __call__(self, fnm, need_image=True, zoomin=3, return_html=False):
|
||||
self.pdf = pdfplumber.open(fnm) if isinstance(
|
||||
fnm, str) else pdfplumber.open(BytesIO(fnm))
|
||||
self.lefted_chars = []
|
||||
self.mean_height = []
|
||||
self.mean_width = []
|
||||
@ -1536,13 +1535,26 @@ class HuParser:
|
||||
self.garbages = {}
|
||||
self.page_cum_height = [0]
|
||||
self.page_layout = []
|
||||
self.page_images = [p.to_image(
|
||||
resolution=72 * zoomin).annotated for i, p in enumerate(self.pdf.pages[:299])]
|
||||
try:
|
||||
self.pdf = pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))
|
||||
self.page_images = [p.to_image(resolution=72*zoomin).annotated for i,p in enumerate(self.pdf.pages[:299])]
|
||||
self.page_chars = [[c for c in self.pdf.pages[i].chars if self._has_color(c)] for i in range(len(self.page_images))]
|
||||
except Exception as e:
|
||||
self.pdf = fitz.open(fnm) if isinstance(fnm, str) else fitz.open(stream=fnm, filetype="pdf")
|
||||
self.page_images = []
|
||||
self.page_chars = []
|
||||
mat = fitz.Matrix(zoomin, zoomin)
|
||||
for page in self.pdf:
|
||||
pix = page.getPixmap(matrix = mat)
|
||||
img = Image.frombytes("RGB", [pix.width, pix.height],
|
||||
pix.samples)
|
||||
self.page_images.append(img)
|
||||
self.page_chars.append([])
|
||||
|
||||
logging.info("Images converted.")
|
||||
logging.info("Table processed.")
|
||||
|
||||
for i, img in enumerate(self.page_images):
|
||||
chars = [c for c in self.pdf.pages[i].chars if self._has_color(c)]
|
||||
chars = self.page_chars[i]
|
||||
self.mean_height.append(
|
||||
np.median(sorted([c["height"] for c in chars])) if chars else 0
|
||||
)
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#
|
||||
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
Loading…
x
Reference in New Issue
Block a user