Update README (#670)

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
This commit is contained in:
Jin Hai 2024-05-08 12:01:26 +08:00 committed by GitHub
parent d15ba37313
commit 48607c3cfb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 19 additions and 13 deletions

View File

@ -58,14 +58,14 @@
## 📌 Latest Features
- 2024-04-26 Add file management.
- 2024-04-19 Support conversation API ([detail](./docs/conversation_api.md)).
- 2024-04-16 Add an embedding model 'bce-embedding-base_v1' from [BCEmbedding](https://github.com/netease-youdao/BCEmbedding).
- 2024-04-16 Add [FastEmbed](https://github.com/qdrant/fastembed), which is designed specifically for light and speedy embedding.
- 2024-04-11 Support [Xinference](./docs/xinference.md) for local LLM deployment.
- 2024-04-10 Add a new layout recognization model for analyzing Laws documentation.
- 2024-04-08 Support [Ollama](./docs/ollama.md) for local LLM deployment.
- 2024-04-07 Support Chinese UI.
- 2024-05-08 Integrates LLM DeepSeek.
- 2024-04-26 Adds file management.
- 2024-04-19 Supports conversation API ([detail](./docs/conversation_api.md)).
- 2024-04-16 Integrates an embedding model 'bce-embedding-base_v1' from [BCEmbedding](https://github.com/netease-youdao/BCEmbedding), and [FastEmbed](https://github.com/qdrant/fastembed), which is designed specifically for light and speedy embedding.
- 2024-04-11 Supports [Xinference](./docs/xinference.md) for local LLM deployment.
- 2024-04-10 Adds a new layout recognition model for analyzing Laws documentation.
- 2024-04-08 Supports [Ollama](./docs/ollama.md) for local LLM deployment.
- 2024-04-07 Supports Chinese UI.
## 🔎 System Architecture
@ -119,6 +119,7 @@
$ chmod +x ./entrypoint.sh
$ docker compose up -d
```
> Please note that running the above commands will automatically download the development version docker image of RAGFlow. If you want to download and run a specific version of docker image, please find the RAGFLOW_VERSION variable in the docker/.env file, change it to the corresponding version, for example, RAGFLOW_VERSION=v0.5.0, and run the above commands.
> The core image is about 9 GB in size and may take a while to load.
@ -180,7 +181,7 @@ To build the Docker images from source:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/
$ docker build -t infiniflow/ragflow:v0.5.0 .
$ docker build -t infiniflow/ragflow:dev .
$ cd ragflow/docker
$ chmod +x ./entrypoint.sh
$ docker compose up -d

View File

@ -58,6 +58,7 @@
## 📌 最新の機能
- 2024-05-08
- 2024-04-26 「ファイル管理」機能を追加しました。
- 2024-04-19 会話 API をサポートします ([詳細](./docs/conversation_api.md))。
- 2024-04-16 [BCEmbedding](https://github.com/netease-youdao/BCEmbedding) から埋め込みモデル「bce-embedding-base_v1」を追加します。
@ -120,7 +121,9 @@
$ docker compose up -d
```
> コアイメージのサイズは約 15 GB で、ロードに時間がかかる場合があります。
> 上記のコマンドを実行すると、RAGFlowの開発版dockerイメージが自動的にダウンロードされます。 特定のバージョンのDockerイメージをダウンロードして実行したい場合は、docker/.envファイルのRAGFLOW_VERSION変数を見つけて、対応するバージョンに変更してください。 例えば、RAGFLOW_VERSION=v0.5.0として、上記のコマンドを実行してください。
> コアイメージのサイズは約 9 GB で、ロードに時間がかかる場合があります。
4. サーバーを立ち上げた後、サーバーの状態を確認する:

View File

@ -58,10 +58,10 @@
## 📌 新增功能
- 2024-05-08 集成大模型 DeepSeek
- 2024-04-26 增添了'文件管理'功能.
- 2024-04-19 支持对话 API ([更多](./docs/conversation_api.md)).
- 2024-04-16 添加嵌入模型 [BCEmbedding](https://github.com/netease-youdao/BCEmbedding) 。
- 2024-04-16 添加 [FastEmbed](https://github.com/qdrant/fastembed) 专为轻型和高速嵌入而设计。
- 2024-04-16 集成嵌入模型 [BCEmbedding](https://github.com/netease-youdao/BCEmbedding) 和 专为轻型和高速嵌入而设计的 [FastEmbed](https://github.com/qdrant/fastembed) 。
- 2024-04-11 支持用 [Xinference](./docs/xinference.md) 本地化部署大模型。
- 2024-04-10 为Laws版面分析增加了底层模型。
- 2024-04-08 支持用 [Ollama](./docs/ollama.md) 本地化部署大模型。
@ -120,7 +120,9 @@
$ docker compose -f docker-compose-CN.yml up -d
```
> 核心镜像文件大约 15 GB可能需要一定时间拉取。请耐心等待。
> 请注意,运行上述命令会自动下载 RAGFlow 的开发版本 docker 镜像。如果你想下载并运行特定版本的 docker 镜像,请在 docker/.env 文件中找到 RAGFLOW_VERSION 变量,将其改为对应版本。例如 RAGFLOW_VERSION=v0.5.0,然后运行上述命令。
> 核心镜像文件大约 9 GB可能需要一定时间拉取。请耐心等待。
4. 服务器启动成功后再次确认服务器状态: