add conversation API (#35)

This commit is contained in:
KevinHuSh 2024-01-18 19:28:37 +08:00 committed by GitHub
parent fad2ec7cf3
commit 4a858d33b6
13 changed files with 425 additions and 153 deletions

View File

@ -13,17 +13,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import hashlib
import re
import numpy as np
from flask import request
from flask_login import login_required, current_user
from rag.nlp import search, huqie
from elasticsearch_dsl import Q
from rag.nlp import search, huqie, retrievaler
from rag.utils import ELASTICSEARCH, rmSpace
from api.db import LLMType
from api.db.services import duplicate_name
from api.db.services.kb_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.user_service import UserTenantService
@ -31,8 +27,9 @@ from api.utils.api_utils import server_error_response, get_data_error_result, va
from api.db.services.document_service import DocumentService
from api.settings import RetCode
from api.utils.api_utils import get_json_result
import hashlib
import re
retrival = search.Dealer(ELASTICSEARCH)
@manager.route('/list', methods=['POST'])
@login_required
@ -45,12 +42,14 @@ def list():
question = req.get("keywords", "")
try:
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
query = {
"doc_ids": [doc_id], "page": page, "size": size, "question": question
}
if "available_int" in req: query["available_int"] = int(req["available_int"])
sres = retrival.search(query, search.index_name(tenant_id))
if "available_int" in req:
query["available_int"] = int(req["available_int"])
sres = retrievaler.search(query, search.index_name(tenant_id))
res = {"total": sres.total, "chunks": []}
for id in sres.ids:
d = {
@ -67,7 +66,7 @@ def list():
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, retmsg=f'Index not found!',
retcode=RetCode.DATA_ERROR)
retcode=RetCode.DATA_ERROR)
return server_error_response(e)
@ -79,8 +78,11 @@ def get():
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
res = ELASTICSEARCH.get(chunk_id, search.index_name(tenants[0].tenant_id))
if not res.get("found"):return server_error_response("Chunk not found")
res = ELASTICSEARCH.get(
chunk_id, search.index_name(
tenants[0].tenant_id))
if not res.get("found"):
return server_error_response("Chunk not found")
id = res["_id"]
res = res["_source"]
res["chunk_id"] = id
@ -90,7 +92,8 @@ def get():
k.append(n)
if re.search(r"(_tks|_ltks)", n):
res[n] = rmSpace(res[n])
for n in k: del res[n]
for n in k:
del res[n]
return get_json_result(data=res)
except Exception as e:
@ -102,7 +105,8 @@ def get():
@manager.route('/set', methods=['POST'])
@login_required
@validate_request("doc_id", "chunk_id", "content_ltks", "important_kwd", "docnm_kwd")
@validate_request("doc_id", "chunk_id", "content_ltks",
"important_kwd")
def set():
req = request.json
d = {"id": req["chunk_id"]}
@ -110,15 +114,21 @@ def set():
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
d["important_kwd"] = req["important_kwd"]
d["important_tks"] = huqie.qie(" ".join(req["important_kwd"]))
if "available_int" in req: d["available_int"] = req["available_int"]
if "available_int" in req:
d["available_int"] = req["available_int"]
try:
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
embd_mdl = TenantLLMService.model_instance(tenant_id, LLMType.EMBEDDING.value)
v, c = embd_mdl.encode([req["docnm_kwd"], req["content_ltks"]])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(retmsg="Document not found!")
v, c = embd_mdl.encode([doc.name, req["content_ltks"]])
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec"%len(v)] = v.tolist()
d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
return get_json_result(data=True)
except Exception as e:
@ -132,19 +142,32 @@ def switch():
req = request.json
try:
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]],
search.index_name(tenant_id)):
search.index_name(tenant_id)):
return get_data_error_result(retmsg="Index updating failure")
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['POST'])
@login_required
@validate_request("chunk_ids")
def rm():
req = request.json
try:
if not ELASTICSEARCH.deleteByQuery(Q("ids", values=req["chunk_ids"]), search.index_name(current_user.id)):
return get_data_error_result(retmsg="Index updating failure")
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/create', methods=['POST'])
@login_required
@validate_request("doc_id", "content_ltks", "important_kwd")
@validate_request("doc_id", "content_ltks")
def create():
req = request.json
md5 = hashlib.md5()
@ -152,24 +175,27 @@ def create():
chunck_id = md5.hexdigest()
d = {"id": chunck_id, "content_ltks": huqie.qie(req["content_ltks"])}
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
d["important_kwd"] = req["important_kwd"]
d["important_tks"] = huqie.qie(" ".join(req["important_kwd"]))
d["important_kwd"] = req.get("important_kwd", [])
d["important_tks"] = huqie.qie(" ".join(req.get("important_kwd", [])))
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e: return get_data_error_result(retmsg="Document not found!")
if not e:
return get_data_error_result(retmsg="Document not found!")
d["kb_id"] = [doc.kb_id]
d["docnm_kwd"] = doc.name
d["doc_id"] = doc.id
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
embd_mdl = TenantLLMService.model_instance(tenant_id, LLMType.EMBEDDING.value)
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value)
v, c = embd_mdl.encode([doc.name, req["content_ltks"]])
DocumentService.increment_chunk_num(req["doc_id"], doc.kb_id, c, 1, 0)
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec"%len(v)] = v.tolist()
d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
return get_json_result(data={"chunk_id": chunck_id})
except Exception as e:
@ -194,44 +220,15 @@ def retrieval_test():
if not e:
return get_data_error_result(retmsg="Knowledgebase not found!")
embd_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.EMBEDDING.value)
sres = retrival.search({"kb_ids": [kb_id], "doc_ids": doc_ids, "size": top,
"question": question, "vector": True,
"similarity": similarity_threshold},
search.index_name(kb.tenant_id),
embd_mdl)
sim, tsim, vsim = retrival.rerank(sres, question, 1-vector_similarity_weight, vector_similarity_weight)
idx = np.argsort(sim*-1)
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
start_idx = (page-1)*size
for i in idx:
ranks["total"] += 1
if sim[i] < similarity_threshold: break
start_idx -= 1
if start_idx >= 0:continue
if len(ranks["chunks"]) == size:continue
id = sres.ids[i]
dnm = sres.field[id]["docnm_kwd"]
d = {
"chunk_id": id,
"content_ltks": sres.field[id]["content_ltks"],
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": dnm,
"kb_id": sres.field[id]["kb_id"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"similarity": sim[i],
"vector_similarity": vsim[i],
"term_similarity": tsim[i]
}
ranks["chunks"].append(d)
if dnm not in ranks["doc_aggs"]:ranks["doc_aggs"][dnm] = 0
ranks["doc_aggs"][dnm] += 1
embd_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.EMBEDDING.value)
ranks = retrievaler.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size, similarity_threshold,
vector_similarity_weight, top, doc_ids)
return get_json_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, retmsg=f'Index not found!',
retcode=RetCode.DATA_ERROR)
return server_error_response(e)
retcode=RetCode.DATA_ERROR)
return server_error_response(e)

View File

@ -0,0 +1,207 @@
#
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
import tiktoken
from flask import request
from flask_login import login_required, current_user
from api.db.services.dialog_service import DialogService, ConversationService
from api.db import StatusEnum, LLMType
from api.db.services.kb_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService
from api.db.services.user_service import TenantService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.utils.api_utils import get_json_result
from rag.llm import ChatModel
from rag.nlp import retrievaler
from rag.nlp.query import EsQueryer
from rag.utils import num_tokens_from_string, encoder
@manager.route('/set', methods=['POST'])
@login_required
@validate_request("dialog_id")
def set():
req = request.json
conv_id = req.get("conversation_id")
if conv_id:
del req["conversation_id"]
try:
if not ConversationService.update_by_id(conv_id, req):
return get_data_error_result(retmsg="Conversation not found!")
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(
retmsg="Fail to update a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
try:
e, dia = DialogService.get_by_id(req["dialog_id"])
if not e:
return get_data_error_result(retmsg="Dialog not found")
conv = {
"id": get_uuid(),
"dialog_id": req["dialog_id"],
"name": "New conversation",
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
}
ConversationService.save(**conv)
e, conv = ConversationService.get_by_id(conv["id"])
if not e:
return get_data_error_result(retmsg="Fail to new a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/get', methods=['GET'])
@login_required
def get():
conv_id = request.args["conversation_id"]
try:
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(retmsg="Conversation not found!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['POST'])
@login_required
def rm():
conv_ids = request.json["conversation_ids"]
try:
for cid in conv_ids:
ConversationService.delete_by_id(cid)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/list', methods=['GET'])
@login_required
def list():
dialog_id = request.args["dialog_id"]
try:
convs = ConversationService.query(dialog_id=dialog_id)
convs = [d.to_dict() for d in convs]
return get_json_result(data=convs)
except Exception as e:
return server_error_response(e)
def message_fit_in(msg, max_length=4000):
def count():
nonlocal msg
tks_cnts = []
for m in msg:tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
total = 0
for m in tks_cnts: total += m["count"]
return total
c = count()
if c < max_length: return c, msg
msg = [m for m in msg if m.role in ["system", "user"]]
c = count()
if c < max_length:return c, msg
msg_ = [m for m in msg[:-1] if m.role == "system"]
msg_.append(msg[-1])
msg = msg_
c = count()
if c < max_length:return c, msg
ll = num_tokens_from_string(msg_[0].content)
l = num_tokens_from_string(msg_[-1].content)
if ll/(ll + l) > 0.8:
m = msg_[0].content
m = encoder.decode(encoder.encode(m)[:max_length-l])
msg[0].content = m
return max_length, msg
m = msg_[1].content
m = encoder.decode(encoder.encode(m)[:max_length-l])
msg[1].content = m
return max_length, msg
def chat(dialog, messages, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
llm = LLMService.query(llm_name=dialog.llm_id)
if not llm:
raise LookupError("LLM(%s) not found"%dialog.llm_id)
llm = llm[0]
prompt_config = dialog.prompt_config
for p in prompt_config["parameters"]:
if p["key"] == "knowledge":continue
if p["key"] not in kwargs and not p["optional"]:raise KeyError("Miss parameter: " + p["key"])
if p["key"] not in kwargs:
prompt_config["system"] = prompt_config["system"].replace("{%s}"%p["key"], " ")
model_config = TenantLLMService.get_api_key(dialog.tenant_id, LLMType.CHAT.value, dialog.llm_id)
if not model_config: raise LookupError("LLM(%s) API key not found"%dialog.llm_id)
question = messages[-1]["content"]
embd_mdl = TenantLLMService.model_instance(
dialog.tenant_id, LLMType.EMBEDDING.value)
kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, dialog.similarity_threshold,
dialog.vector_similarity_weight, top=1024, aggs=False)
knowledges = [ck["content_ltks"] for ck in kbinfos["chunks"]]
if not knowledges and prompt_config["empty_response"]:
return {"answer": prompt_config["empty_response"], "retrieval": kbinfos}
kwargs["knowledge"] = "\n".join(knowledges)
gen_conf = dialog.llm_setting[dialog.llm_setting_type]
msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
used_token_count = message_fit_in(msg, int(llm.max_tokens * 0.97))
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
mdl = ChatModel[model_config.llm_factory](model_config["api_key"], dialog.llm_id)
answer = mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
answer = retrievaler.insert_citations(answer,
[ck["content_ltks"] for ck in kbinfos["chunks"]],
[ck["vector"] for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1-dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
return {"answer": answer, "retrieval": kbinfos}
@manager.route('/completion', methods=['POST'])
@login_required
@validate_request("dialog_id", "messages")
def completion():
req = request.json
msg = []
for m in req["messages"]:
if m["role"] == "system":continue
if m["role"] == "assistant" and not msg:continue
msg.append({"role": m["role"], "content": m["content"]})
try:
e, dia = DialogService.get_by_id(req["dialog_id"])
if not e:
return get_data_error_result(retmsg="Dialog not found!")
del req["dialog_id"]
del req["messages"]
return get_json_result(data=chat(dia, msg, **req))
except Exception as e:
return server_error_response(e)

View File

@ -13,28 +13,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import hashlib
import re
import numpy as np
from flask import request
from flask_login import login_required, current_user
from api.db.services.dialog_service import DialogService
from rag.nlp import search, huqie
from rag.utils import ELASTICSEARCH, rmSpace
from api.db import LLMType, StatusEnum
from api.db.services import duplicate_name
from api.db import StatusEnum
from api.db.services.kb_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.user_service import UserTenantService, TenantService
from api.db.services.user_service import TenantService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.db.services.document_service import DocumentService
from api.settings import RetCode, stat_logger
from api.utils.api_utils import get_json_result
from rag.utils.minio_conn import MINIO
from api.utils.file_utils import filename_type
@manager.route('/set', methods=['POST'])
@ -128,6 +116,7 @@ def set():
except Exception as e:
return server_error_response(e)
@manager.route('/get', methods=['GET'])
@login_required
def get():
@ -159,5 +148,18 @@ def list():
for d in diags:
d["kb_ids"], d["kb_names"] = get_kb_names(d["kb_ids"])
return get_json_result(data=diags)
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['POST'])
@login_required
@validate_request("dialog_id")
def rm():
req = request.json
try:
if not DialogService.update_by_id(req["dialog_id"], {"status": StatusEnum.INVALID.value}):
return get_data_error_result(retmsg="Dialog not found!")
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)

View File

@ -271,7 +271,7 @@ def change_parser():
@manager.route('/image/<image_id>', methods=['GET'])
@login_required
#@login_required
def get_image(image_id):
try:
bkt, nm = image_id.split("-")

View File

@ -108,7 +108,7 @@ def rm():
if not KnowledgebaseService.query(created_by=current_user.id, id=req["kb_id"]):
return get_json_result(data=False, retmsg=f'Only owner of knowledgebase authorized for this operation.', retcode=RetCode.OPERATING_ERROR)
if not KnowledgebaseService.update_by_id(req["kb_id"], {"status": StatusEnum.IN_VALID.value}): return get_data_error_result(retmsg="Database error (Knowledgebase removal)!")
if not KnowledgebaseService.update_by_id(req["kb_id"], {"status": StatusEnum.INVALID.value}): return get_data_error_result(retmsg="Database error (Knowledgebase removal)!")
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)

View File

@ -20,7 +20,7 @@ from strenum import StrEnum
class StatusEnum(Enum):
VALID = "1"
IN_VALID = "0"
INVALID = "0"
class UserTenantRole(StrEnum):

View File

@ -430,6 +430,7 @@ class LLM(DataBaseModel):
llm_name = CharField(max_length=128, null=False, help_text="LLM name", primary_key=True)
model_type = CharField(max_length=128, null=False, help_text="LLM, Text Embedding, Image2Text, ASR")
fid = CharField(max_length=128, null=False, help_text="LLM factory id")
max_tokens = IntegerField(default=0)
tags = CharField(max_length=255, null=False, help_text="LLM, Text Embedding, Image2Text, Chat, 32k...")
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted1: validate)", default="1")
@ -467,8 +468,8 @@ class Knowledgebase(DataBaseModel):
doc_num = IntegerField(default=0)
token_num = IntegerField(default=0)
chunk_num = IntegerField(default=0)
similarity_threshold = FloatField(default=0.4)
vector_similarity_weight = FloatField(default=0.3)
#similarity_threshold = FloatField(default=0.4)
#vector_similarity_weight = FloatField(default=0.3)
parser_id = CharField(max_length=32, null=False, help_text="default parser ID")
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted1: validate)", default="1")
@ -518,6 +519,11 @@ class Dialog(DataBaseModel):
prompt_type = CharField(max_length=16, null=False, default="simple", help_text="simple|advanced")
prompt_config = JSONField(null=False, default={"system": "", "prologue": "您好我是您的助手小樱长得可爱又善良can I help you?",
"parameters": [], "empty_response": "Sorry! 知识库中未找到相关内容!"})
similarity_threshold = FloatField(default=0.4)
vector_similarity_weight = FloatField(default=0.3)
top_n = IntegerField(default=6)
kb_ids = JSONField(null=False, default=[])
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted1: validate)", default="1")

View File

@ -62,61 +62,73 @@ def init_llm_factory():
"fid": factory_infos[0]["name"],
"llm_name": "gpt-3.5-turbo",
"tags": "LLM,CHAT,4K",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
},{
"fid": factory_infos[0]["name"],
"llm_name": "gpt-3.5-turbo-16k-0613",
"tags": "LLM,CHAT,16k",
"max_tokens": 16385,
"model_type": LLMType.CHAT.value
},{
"fid": factory_infos[0]["name"],
"llm_name": "text-embedding-ada-002",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
},{
"fid": factory_infos[0]["name"],
"llm_name": "whisper-1",
"tags": "SPEECH2TEXT",
"max_tokens": 25*1024*1024,
"model_type": LLMType.SPEECH2TEXT.value
},{
"fid": factory_infos[0]["name"],
"llm_name": "gpt-4",
"tags": "LLM,CHAT,8K",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
},{
"fid": factory_infos[0]["name"],
"llm_name": "gpt-4-32k",
"tags": "LLM,CHAT,32K",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
},{
"fid": factory_infos[0]["name"],
"llm_name": "gpt-4-vision-preview",
"tags": "LLM,CHAT,IMAGE2TEXT",
"max_tokens": 765,
"model_type": LLMType.IMAGE2TEXT.value
},{
"fid": factory_infos[1]["name"],
"llm_name": "qwen-turbo",
"tags": "LLM,CHAT,8K",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
},{
"fid": factory_infos[1]["name"],
"llm_name": "qwen-plus",
"tags": "LLM,CHAT,32K",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
},{
"fid": factory_infos[1]["name"],
"llm_name": "text-embedding-v2",
"tags": "TEXT EMBEDDING,2K",
"max_tokens": 2048,
"model_type": LLMType.EMBEDDING.value
},{
"fid": factory_infos[1]["name"],
"llm_name": "paraformer-realtime-8k-v1",
"tags": "SPEECH2TEXT",
"max_tokens": 25*1024*1024,
"model_type": LLMType.SPEECH2TEXT.value
},{
"fid": factory_infos[1]["name"],
"llm_name": "qwen_vl_chat_v1",
"tags": "LLM,CHAT,IMAGE2TEXT",
"max_tokens": 765,
"model_type": LLMType.IMAGE2TEXT.value
},
]

View File

@ -34,7 +34,7 @@ class TenantLLMService(CommonService):
@classmethod
@DB.connection_context()
def get_api_key(cls, tenant_id, model_type):
def get_api_key(cls, tenant_id, model_type, model_name=""):
objs = cls.query(tenant_id=tenant_id, model_type=model_type)
if objs and len(objs)>0 and objs[0].llm_name:
return objs[0]
@ -42,7 +42,7 @@ class TenantLLMService(CommonService):
fields = [LLM.llm_name, cls.model.llm_factory, cls.model.api_key]
objs = cls.model.select(*fields).join(LLM, on=(LLM.fid == cls.model.llm_factory)).where(
(cls.model.tenant_id == tenant_id),
(cls.model.model_type == model_type),
((cls.model.model_type == model_type) | (cls.model.llm_name == model_name)),
(LLM.status == StatusEnum.VALID)
)
@ -60,7 +60,7 @@ class TenantLLMService(CommonService):
@classmethod
@DB.connection_context()
def model_instance(cls, tenant_id, llm_type):
model_config = cls.get_api_key(tenant_id, model_type=LLMType.EMBEDDING)
model_config = cls.get_api_key(tenant_id, model_type=LLMType.EMBEDDING.value)
if not model_config:
model_config = {"llm_factory": "local", "api_key": "", "llm_name": ""}
else:

View File

@ -30,3 +30,9 @@ CvModel = {
"通义千问": QWenCV,
}
ChatModel = {
"OpenAI": GptTurbo,
"通义千问": QWenChat,
}

View File

@ -0,0 +1,4 @@
from . import search
from rag.utils import ELASTICSEARCH
retrievaler = search.Dealer(ELASTICSEARCH)

View File

@ -2,7 +2,7 @@
import json
import re
from elasticsearch_dsl import Q, Search, A
from typing import List, Optional, Tuple, Dict, Union
from typing import List, Optional, Dict, Union
from dataclasses import dataclass
from rag.settings import es_logger
@ -20,6 +20,8 @@ class Dealer:
self.qryr.flds = [
"title_tks^10",
"title_sm_tks^5",
"important_kwd^30",
"important_tks^20",
"content_ltks^2",
"content_sm_ltks"]
self.es = es
@ -38,10 +40,10 @@ class Dealer:
def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
qv, c = emb_mdl.encode_queries(txt)
return {
"field": "q_%d_vec"%len(qv),
"field": "q_%d_vec" % len(qv),
"k": topk,
"similarity": sim,
"num_candidates": topk*2,
"num_candidates": topk * 2,
"query_vector": qv
}
@ -53,16 +55,18 @@ class Dealer:
if req.get("doc_ids"):
bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
if "available_int" in req:
if req["available_int"] == 0: bqry.filter.append(Q("range", available_int={"lt": 1}))
else: bqry.filter.append(Q("bool", must_not=Q("range", available_int={"lt": 1})))
if req["available_int"] == 0:
bqry.filter.append(Q("range", available_int={"lt": 1}))
else:
bqry.filter.append(Q("bool", must_not=Q("range", available_int={"lt": 1})))
bqry.boost = 0.05
s = Search()
pg = int(req.get("page", 1)) - 1
ps = int(req.get("size", 1000))
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id","img_id",
"image_id", "doc_id", "q_512_vec", "q_768_vec",
"q_1024_vec", "q_1536_vec", "available_int"])
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id",
"image_id", "doc_id", "q_512_vec", "q_768_vec",
"q_1024_vec", "q_1536_vec", "available_int"])
s = s.query(bqry)[pg * ps:(pg + 1) * ps]
s = s.highlight("content_ltks")
@ -171,74 +175,106 @@ class Dealer:
def trans2floats(txt):
return [float(t) for t in txt.split("\t")]
def insert_citations(self, ans, top_idx, sres, emb_mdl,
vfield="q_vec", cfield="content_ltks"):
def insert_citations(self, answer, chunks, chunk_v, embd_mdl, tkweight=0.3, vtweight=0.7):
pieces = re.split(r"([;。?!\n]|[a-z][.?;!][ \n])", answer)
for i in range(1, len(pieces)):
if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
pieces[i - 1] += pieces[i][0]
pieces[i] = pieces[i][1:]
idx = []
pieces_ = []
for i, t in enumerate(pieces):
if len(t) < 5: continue
idx.append(i)
pieces_.append(t)
if not pieces_: return answer
ins_embd = [Dealer.trans2floats(
sres.field[sres.ids[i]][vfield]) for i in top_idx]
ins_tw = [sres.field[sres.ids[i]][cfield].split(" ") for i in top_idx]
s = 0
e = 0
res = ""
ans_v = embd_mdl.encode(pieces_)
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
len(ans_v[0]), len(chunk_v[0]))
def citeit():
nonlocal s, e, ans, res, emb_mdl
if not ins_embd:
return
embd = emb_mdl.encode(ans[s: e])
sim = self.qryr.hybrid_similarity(embd,
ins_embd,
huqie.qie(ans[s:e]).split(" "),
ins_tw)
chunks_tks = [huqie.qie(ck).split(" ") for ck in chunks]
cites = {}
for i,a in enumerate(pieces_):
sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
chunk_v,
huqie.qie(pieces_[i]).split(" "),
chunks_tks,
tkweight, vtweight)
mx = np.max(sim) * 0.99
if mx < 0.55:
return
cita = list(set([top_idx[i]
for i in range(len(ins_embd)) if sim[i] > mx]))[:4]
for i in cita:
res += f"@?{i}?@"
if mx < 0.55: continue
cites[idx[i]] = list(set([str(i) for i in range(len(chunk_v)) if sim[i] > mx]))[:4]
return cita
punct = set(";。?!")
if not self.qryr.isChinese(ans):
punct.add("?")
punct.add(".")
while e < len(ans):
if e - s < 12 or ans[e] not in punct:
e += 1
continue
if ans[e] == "." and e + \
1 < len(ans) and re.match(r"[0-9]", ans[e + 1]):
e += 1
continue
if ans[e] == "." and e - 2 >= 0 and ans[e - 2] == "\n":
e += 1
continue
res += ans[s: e]
citeit()
res += ans[e]
e += 1
s = e
if s < len(ans):
res += ans[s:]
citeit()
res = ""
for i,p in enumerate(pieces):
res += p
if i not in idx:continue
if i not in cites:continue
res += "##%s$$"%"$".join(cites[i])
return res
def rerank(self, sres, query, tkweight=0.3, vtweight=0.7, cfield="content_ltks"):
ins_embd = [
Dealer.trans2floats(
sres.field[i]["q_%d_vec"%len(sres.query_vector)]) for i in sres.ids]
sres.field[i]["q_%d_vec" % len(sres.query_vector)]) for i in sres.ids]
if not ins_embd:
return []
ins_tw = [sres.field[i][cfield].split(" ") for i in sres.ids]
ins_tw = [huqie.qie(sres.field[i][cfield]).split(" ") for i in sres.ids]
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
ins_embd,
huqie.qie(query).split(" "),
ins_tw, tkweight, vtweight)
ins_embd,
huqie.qie(query).split(" "),
ins_tw, tkweight, vtweight)
return sim, tksim, vtsim
def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
return self.qryr.hybrid_similarity(ans_embd,
ins_embd,
huqie.qie(ans).split(" "),
huqie.qie(inst).split(" "))
def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
"question": question, "vector": True,
"similarity": similarity_threshold}
sres = self.search(req, index_name(tenant_id), embd_mdl)
sim, tsim, vsim = self.rerank(
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
idx = np.argsort(sim * -1)
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
dim = len(sres.query_vector)
start_idx = (page - 1) * page_size
for i in idx:
ranks["total"] += 1
if sim[i] < similarity_threshold:
break
start_idx -= 1
if start_idx >= 0:
continue
if len(ranks["chunks"]) == page_size:
if aggs:
continue
break
id = sres.ids[i]
dnm = sres.field[id]["docnm_kwd"]
d = {
"chunk_id": id,
"content_ltks": sres.field[id]["content_ltks"],
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": dnm,
"kb_id": sres.field[id]["kb_id"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"similarity": sim[i],
"vector_similarity": vsim[i],
"term_similarity": tsim[i],
"vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim)))
}
ranks["chunks"].append(d)
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = 0
ranks["doc_aggs"][dnm] += 1
return ranks

View File

@ -58,9 +58,11 @@ def findMaxTm(fnm):
print("WARNING: can't find " + fnm)
return m
encoder = tiktoken.encoding_for_model("gpt-3.5-turbo")
def num_tokens_from_string(string: str) -> int:
"""Returns the number of tokens in a text string."""
encoding = tiktoken.get_encoding('cl100k_base')
num_tokens = len(encoding.encode(string))
return num_tokens
num_tokens = len(encoder.encode(string))
return num_tokens