mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-12 02:29:03 +08:00
Added LocalAI support for rerank models (#3446)
### What problem does this PR solve? Hi there! LocalAI added support of rerank models https://localai.io/features/reranker/ I've implemented LocalAIRerank class (typically copied it from OpenAI_APIRerank class). Also, LocalAI model response with 500 error code if len of "documents" is less than 2 in similarity check. So I've added the second "document" on RERANK model connection check in `api/apps/llm_app.py`. ### Type of change - [x] New Feature (non-breaking change which adds functionality) Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
This commit is contained in:
parent
70cd5c1599
commit
4b3eeaa6ef
@ -238,7 +238,7 @@ def add_llm():
|
||||
base_url=llm["api_base"]
|
||||
)
|
||||
try:
|
||||
arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!"])
|
||||
arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
|
||||
if len(arr) == 0 or tc == 0:
|
||||
raise Exception("Not known.")
|
||||
except Exception as e:
|
||||
|
@ -110,6 +110,7 @@ ChatModel = {
|
||||
}
|
||||
|
||||
RerankModel = {
|
||||
"LocalAI":LocalAIRerank,
|
||||
"BAAI": DefaultRerank,
|
||||
"Jina": JinaRerank,
|
||||
"Youdao": YoudaoRerank,
|
||||
|
@ -185,11 +185,46 @@ class XInferenceRerank(Base):
|
||||
|
||||
class LocalAIRerank(Base):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
pass
|
||||
if base_url.find("/rerank") == -1:
|
||||
self.base_url = urljoin(base_url, "/rerank")
|
||||
else:
|
||||
self.base_url = base_url
|
||||
self.headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {key}"
|
||||
}
|
||||
self.model_name = model_name.replace("___LocalAI","")
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
raise NotImplementedError("The LocalAIRerank has not been implement")
|
||||
# noway to config Ragflow , use fix setting
|
||||
texts = [truncate(t, 500) for t in texts]
|
||||
data = {
|
||||
"model": self.model_name,
|
||||
"query": query,
|
||||
"documents": texts,
|
||||
"top_n": len(texts),
|
||||
}
|
||||
token_count = 0
|
||||
for t in texts:
|
||||
token_count += num_tokens_from_string(t)
|
||||
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
||||
rank = np.zeros(len(texts), dtype=float)
|
||||
if 'results' not in res:
|
||||
raise ValueError("response not contains results\n" + str(res))
|
||||
for d in res["results"]:
|
||||
rank[d["index"]] = d["relevance_score"]
|
||||
|
||||
# Normalize the rank values to the range 0 to 1
|
||||
min_rank = np.min(rank)
|
||||
max_rank = np.max(rank)
|
||||
|
||||
# Avoid division by zero if all ranks are identical
|
||||
if max_rank - min_rank != 0:
|
||||
rank = (rank - min_rank) / (max_rank - min_rank)
|
||||
else:
|
||||
rank = np.zeros_like(rank)
|
||||
|
||||
return rank, token_count
|
||||
|
||||
class NvidiaRerank(Base):
|
||||
def __init__(
|
||||
|
Loading…
x
Reference in New Issue
Block a user