Add language portugese br (#4550)

### What problem does this PR solve?

Add language Portugese from Brazil

### Type of change

- [X] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Henrique 2025-01-21 00:22:29 -03:00 committed by GitHub
parent fc35821f81
commit 5632613eb5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
18 changed files with 1663 additions and 144 deletions

View File

@ -9,7 +9,8 @@
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -68,6 +69,7 @@ data.
## 🎮 Demo
Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
@ -86,6 +88,7 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
⭐️ Star our repository to stay up-to-date with exciting new features and improvements! Get instant notifications for new
releases! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
@ -134,7 +137,7 @@ releases! 🌟
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> If you have not installed Docker on your local machine (Windows, Mac, or Linux),
see [Install Docker Engine](https://docs.docker.com/engine/install/).
> see [Install Docker Engine](https://docs.docker.com/engine/install/).
### 🚀 Start up the server
@ -154,7 +157,7 @@ releases! 🌟
> ```
>
> This change will be reset after a system reboot. To ensure your change remains permanent, add or update the
`vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
> `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
>
> ```bash
> vm.max_map_count=262144
@ -179,8 +182,8 @@ releases! 🌟
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. Check the server status after having the server up and running:
@ -203,12 +206,13 @@ releases! 🌟
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anormal`
error because, at that moment, your RAGFlow may not be fully initialized.
> error because, at that moment, your RAGFlow may not be fully initialized.
5. In your web browser, enter the IP address of your server and log in to RAGFlow.
> With the default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default
HTTP serving port `80` can be omitted when using the default configurations.
> HTTP serving port `80` can be omitted when using the default configurations.
6. In [service_conf.yaml.template](./docker/service_conf.yaml.template), select the desired LLM factory in `user_default_llm` and update
the `API_KEY` field with the corresponding API key.
@ -281,11 +285,13 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 🔨 Launch service from source for development
1. Install uv, or skip this step if it is already installed:
```bash
pipx install uv
```
2. Clone the source code and install Python dependencies:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -293,11 +299,13 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
```
3. Launch the dependent services (MinIO, Elasticsearch, Redis, and MySQL) using Docker Compose:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
Add the following line to `/etc/hosts` to resolve all hosts specified in **docker/.env** to `127.0.0.1`:
```
127.0.0.1 es01 infinity mysql minio redis
```
@ -309,6 +317,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
```
5. Launch backend service:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
@ -321,6 +330,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
npm install
```
7. Launch frontend service:
```bash
npm run dev
```

View File

@ -9,7 +9,8 @@
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -65,6 +66,7 @@
## 🎮 Demo
Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
@ -82,6 +84,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
## 🎉 Tetap Terkini
⭐️ Star repositori kami untuk tetap mendapat informasi tentang fitur baru dan peningkatan menarik! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
@ -147,7 +150,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> ```
>
> Perubahan ini akan hilang setelah sistem direboot. Untuk membuat perubahan ini permanen, tambahkan atau perbarui nilai
`vm.max_map_count` di **/etc/sysctl.conf**:
> `vm.max_map_count` di **/etc/sysctl.conf**:
>
> ```bash
> vm.max_map_count=262144
@ -172,8 +175,8 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. Periksa status server setelah server aktif dan berjalan:
@ -196,12 +199,13 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> Jika Anda melewatkan langkah ini dan langsung login ke RAGFlow, browser Anda mungkin menampilkan error `network anormal`
karena RAGFlow mungkin belum sepenuhnya siap.
> karena RAGFlow mungkin belum sepenuhnya siap.
5. Buka browser web Anda, masukkan alamat IP server Anda, dan login ke RAGFlow.
> Dengan pengaturan default, Anda hanya perlu memasukkan `http://IP_DEVICE_ANDA` (**tanpa** nomor port) karena
port HTTP default `80` bisa dihilangkan saat menggunakan konfigurasi default.
> port HTTP default `80` bisa dihilangkan saat menggunakan konfigurasi default.
6. Dalam [service_conf.yaml.template](./docker/service_conf.yaml.template), pilih LLM factory yang diinginkan di `user_default_llm` dan perbarui
bidang `API_KEY` dengan kunci API yang sesuai.
@ -250,11 +254,13 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 🔨 Menjalankan Aplikasi dari untuk Pengembangan
1. Instal uv, atau lewati langkah ini jika sudah terinstal:
```bash
pipx install uv
```
2. Clone kode sumber dan instal dependensi Python:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -262,11 +268,13 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
```
3. Jalankan aplikasi yang diperlukan (MinIO, Elasticsearch, Redis, dan MySQL) menggunakan Docker Compose:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
Tambahkan baris berikut ke `/etc/hosts` untuk memetakan semua host yang ditentukan di **conf/service_conf.yaml** ke `127.0.0.1`:
```
127.0.0.1 es01 infinity mysql minio redis
```
@ -278,6 +286,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
```
5. Jalankan aplikasi backend:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
@ -290,6 +299,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
npm install
```
7. Jalankan aplikasi frontend:
```bash
npm run dev
```

View File

@ -9,7 +9,8 @@
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -30,7 +31,6 @@
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
@ -46,12 +46,12 @@
## 🎮 Demo
デモをお試しください:[https://demo.ragflow.io](https://demo.ragflow.io)。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 最新情報
- 2024-12-18 Deepdoc のドキュメント レイアウト分析モデルをアップグレードします。
@ -62,7 +62,9 @@
- 2024-08-02 [graphrag](https://github.com/microsoft/graphrag) からインスピレーションを得た GraphRAG とマインド マップをサポートします。
## 🎉 続きを楽しみに
⭐️ リポジトリをスター登録して、エキサイティングな新機能やアップデートを最新の状態に保ちましょう!すべての新しいリリースに関する即時通知を受け取れます! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
@ -142,7 +144,7 @@
3. ビルド済みの Docker イメージをビルドし、サーバーを起動する:
> 以下のコマンドは、RAGFlow Dockerイメージの v0.15.1-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.15.1-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.15.1 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.1 と設定します。
> 以下のコマンドは、RAGFlow Docker イメージの v0.15.1-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.15.1-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.15.1 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.1 と設定します。
```bash
$ cd ragflow
@ -153,8 +155,8 @@
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. サーバーを立ち上げた後、サーバーの状態を確認する:
@ -176,6 +178,7 @@
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> もし確認ステップをスキップして直接 RAGFlow にログインした場合、その時点で RAGFlow が完全に初期化されていない可能性があるため、ブラウザーがネットワーク異常エラーを表示するかもしれません。
5. ウェブブラウザで、プロンプトに従ってサーバーの IP アドレスを入力し、RAGFlow にログインします。
@ -214,16 +217,16 @@ RAGFlow はデフォルトで Elasticsearch を使用して全文とベクトル
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
2. **docker/.env** の「DOC _ ENGINE」を「infinity」に設定します。
2. **docker/.env** の「DOC \_ ENGINE」を「infinity」に設定します。
3. 起動コンテナ:
```bash
$ docker compose -f docker/docker-compose.yml up -d
```
> [!WARNING]
> Linux/arm64 マシンでの Infinity への切り替えは正式にサポートされていません。
> [!WARNING]
> Linux/arm64 マシンでの Infinity への切り替えは正式にサポートされていません。
## 🔧 ソースコードでDockerイメージを作成埋め込みモデルなし
## 🔧 ソースコードで Docker イメージを作成(埋め込みモデルなし)
この Docker イメージのサイズは約 1GB で、外部の大モデルと埋め込みサービスに依存しています。
@ -233,7 +236,7 @@ cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 ソースコードをコンパイルしたDockerイメージ埋め込みモデルを含む
## 🔧 ソースコードをコンパイルした Docker イメージ(埋め込みモデルを含む)
この Docker のサイズは約 9GB で、埋め込みモデルを含むため、外部の大モデルサービスのみが必要です。
@ -246,11 +249,13 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 🔨 ソースコードからサービスを起動する方法
1. uv をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
```bash
pipx install uv
```
2. ソースコードをクローンし、Python の依存関係をインストールする:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -258,11 +263,13 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
```
3. Docker Compose を使用して依存サービスMinIO、Elasticsearch、Redis、MySQLを起動する:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
`/etc/hosts` に以下の行を追加して、**conf/service_conf.yaml** に指定されたすべてのホストを `127.0.0.1` に解決します:
```
127.0.0.1 es01 infinity mysql minio redis
```
@ -274,6 +281,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
```
5. バックエンドサービスを起動する:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
@ -286,6 +294,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
npm install
```
7. フロントエンドサービスを起動する:
```bash
npm run dev
```

View File

@ -9,7 +9,8 @@
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -30,7 +31,6 @@
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
@ -39,69 +39,65 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
## 💡 RAGFlow란?
[RAGFlow](https://ragflow.io/)는 심층 문서 이해에 기반한 오픈소스 RAG (Retrieval-Augmented Generation) 엔진입니다. 이 엔진은 대규모 언어 모델(LLM)과 결합하여 정확한 질문 응답 기능을 제공하며, 다양한 복잡한 형식의 데이터에서 신뢰할 수 있는 출처를 바탕으로 한 인용을 통해 이를 뒷받침합니다. RAGFlow는 규모에 상관없이 모든 기업에 최적화된 RAG 워크플로우를 제공합니다.
## 🎮 데모
데모를 [https://demo.ragflow.io](https://demo.ragflow.io)에서 실행해 보세요.
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 업데이트
- 2024-12-18 Deepdoc의 문서 레이아웃 분석 모델 업그레이드.
- 2024-12-04 지식베이스에 대한 페이지랭크 점수를 지원합니다.
- 2024-11-22 에이전트의 변수 정의 및 사용을 개선했습니다.
- 2024-11-01 파싱된 청크에 키워드 추출 및 관련 질문 생성을 추가하여 재현율을 향상시킵니다.
- 2024-08-22 RAG를 통해 SQL 문에 텍스트를 지원합니다.
- 2024-08-02: [graphrag](https://github.com/microsoft/graphrag)와 마인드맵에서 영감을 받은 GraphRAG를 지원합니다.
## 🎉 계속 지켜봐 주세요
⭐️우리의 저장소를 즐겨찾기에 등록하여 흥미로운 새로운 기능과 업데이트를 최신 상태로 유지하세요! 모든 새로운 릴리스에 대한 즉시 알림을 받으세요! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
## 🌟 주요 기능
### 🍭 **"Quality in, quality out"**
- [심층 문서 이해](./deepdoc/README.md)를 기반으로 복잡한 형식의 비정형 데이터에서 지식을 추출합니다.
- 문자 그대로 무한한 토큰에서 "데이터 속의 바늘"을 찾아냅니다.
### 🍱 **템플릿 기반의 chunking**
- 똑똑하고 설명 가능한 방식.
- 다양한 템플릿 옵션을 제공합니다.
### 🌱 **할루시네이션을 줄인 신뢰할 수 있는 인용**
- 텍스트 청킹을 시각화하여 사용자가 개입할 수 있도록 합니다.
- 중요한 참고 자료와 추적 가능한 인용을 빠르게 확인하여 신뢰할 수 있는 답변을 지원합니다.
### 🍔 **다른 종류의 데이터 소스와의 호환성**
- 워드, 슬라이드, 엑셀, 텍스트 파일, 이미지, 스캔본, 구조화된 데이터, 웹 페이지 등을 지원합니다.
### 🛀 **자동화되고 손쉬운 RAG 워크플로우**
- 개인 및 대규모 비즈니스에 맞춘 효율적인 RAG 오케스트레이션.
- 구성 가능한 LLM 및 임베딩 모델.
- 다중 검색과 결합된 re-ranking.
- 비즈니스와 원활하게 통합할 수 있는 직관적인 API.
## 🔎 시스템 아키텍처
<div align="center" style="margin-top:20px;margin-bottom:20px;">
@ -109,17 +105,19 @@
</div>
## 🎬 시작하기
### 📝 사전 준비 사항
- CPU >= 4 cores
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> 로컬 머신(Windows, Mac, Linux)에 Docker가 설치되지 않은 경우, [Docker 엔진 설치]((https://docs.docker.com/engine/install/))를 참조하세요.
> 로컬 머신(Windows, Mac, Linux)에 Docker가 설치되지 않은 경우, [Docker 엔진 설치](<(https://docs.docker.com/engine/install/)>)를 참조하세요.
### 🚀 서버 시작하기
1. `vm.max_map_count`가 262144 이상인지 확인하세요:
> `vm.max_map_count`의 값을 아래 명령어를 통해 확인하세요:
>
> ```bash
@ -158,8 +156,8 @@
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
4. 서버가 시작된 후 서버 상태를 확인하세요:
@ -181,11 +179,13 @@
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> 만약 확인 단계를 건너뛰고 바로 RAGFlow에 로그인하면, RAGFlow가 완전히 초기화되지 않았기 때문에 브라우저에서 `network anormal` 오류가 발생할 수 있습니다.
5. 웹 브라우저에 서버의 IP 주소를 입력하고 RAGFlow에 로그인하세요.
> 기본 설정을 사용할 경우, `http://IP_OF_YOUR_MACHINE`만 입력하면 됩니다 (포트 번호는 제외). 기본 HTTP 서비스 포트 `80`은 기본 구성으로 사용할 때 생략할 수 있습니다.
6. [service_conf.yaml.template](./docker/service_conf.yaml.template) 파일에서 원하는 LLM 팩토리를 `user_default_llm`에 선택하고, `API_KEY` 필드를 해당 API 키로 업데이트하세요.
> 자세한 내용은 [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup)를 참조하세요.
_이제 쇼가 시작됩니다!_
@ -213,6 +213,7 @@
### Elasticsearch 에서 Infinity 로 문서 엔진 전환
RAGFlow 는 기본적으로 Elasticsearch 를 사용하여 전체 텍스트 및 벡터를 저장합니다. [Infinity]로 전환(https://github.com/infiniflow/infinity/), 다음 절차를 따르십시오.
1. 실행 중인 모든 컨테이너를 중지합니다.
```bash
$docker compose-f docker/docker-compose.yml down -v
@ -222,8 +223,8 @@ RAGFlow 는 기본적으로 Elasticsearch 를 사용하여 전체 텍스트 및
```bash
$docker compose-f docker/docker-compose.yml up -d
```
> [!WARNING]
> Linux/arm64 시스템에서 Infinity로 전환하는 것은 공식적으로 지원되지 않습니다.
> [!WARNING]
> Linux/arm64 시스템에서 Infinity로 전환하는 것은 공식적으로 지원되지 않습니다.
## 🔧 소스 코드로 Docker 이미지를 컴파일합니다(임베딩 모델 포함하지 않음)
@ -248,11 +249,13 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 🔨 소스 코드로 서비스를 시작합니다.
1. uv를 설치하거나 이미 설치된 경우 이 단계를 건너뜁니다:
```bash
pipx install uv
```
2. 소스 코드를 클론하고 Python 의존성을 설치합니다:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -260,11 +263,13 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
```
3. Docker Compose를 사용하여 의존 서비스(MinIO, Elasticsearch, Redis 및 MySQL)를 시작합니다:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
`/etc/hosts` 에 다음 줄을 추가하여 **conf/service_conf.yaml** 에 지정된 모든 호스트를 `127.0.0.1` 로 해결합니다:
```
127.0.0.1 es01 infinity mysql minio redis
```
@ -276,6 +281,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
```
5. 백엔드 서비스를 시작합니다:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
@ -288,6 +294,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
npm install
```
7. 프론트엔드 서비스를 시작합니다:
```bash
npm run dev
```

352
README_pt_br.md Normal file
View File

@ -0,0 +1,352 @@
<div align="center">
<a href="https://demo.ragflow.io/">
<img src="web/src/assets/logo-with-text.png" width="520" alt="ragflow logo">
</a>
</div>
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
<a href="https://x.com/intent/follow?screen_name=infiniflowai" target="_blank">
<img src="https://img.shields.io/twitter/follow/infiniflow?logo=X&color=%20%23f5f5f5" alt="seguir no X(Twitter)">
</a>
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.15.1-brightgreen" alt="docker pull infiniflow/ragflow:v0.15.1">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Versão" alt="Última Versão">
</a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?labelColor=d4eaf7&color=2e6cc4" alt="licença">
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Documentação</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
<details open>
<summary></b>📕 Índice</b></summary>
- 💡 [O que é o RAGFlow?](#-o-que-é-o-ragflow)
- 🎮 [Demo](#-demo)
- 📌 [Últimas Atualizações](#-últimas-atualizações)
- 🌟 [Principais Funcionalidades](#-principais-funcionalidades)
- 🔎 [Arquitetura do Sistema](#-arquitetura-do-sistema)
- 🎬 [Primeiros Passos](#-primeiros-passos)
- 🔧 [Configurações](#-configurações)
- 🔧 [Construir uma imagem docker sem incorporar modelos](#-construir-uma-imagem-docker-sem-incorporar-modelos)
- 🔧 [Construir uma imagem docker incluindo modelos](#-construir-uma-imagem-docker-incluindo-modelos)
- 🔨 [Lançar serviço a partir do código-fonte para desenvolvimento](#-lançar-serviço-a-partir-do-código-fonte-para-desenvolvimento)
- 📚 [Documentação](#-documentação)
- 📜 [Roadmap](#-roadmap)
- 🏄 [Comunidade](#-comunidade)
- 🙌 [Contribuindo](#-contribuindo)
</details>
## 💡 O que é o RAGFlow?
[RAGFlow](https://ragflow.io/) é um mecanismo RAG (Geração Aumentada por Recuperação) de código aberto baseado em entendimento profundo de documentos. Ele oferece um fluxo de trabalho RAG simplificado para empresas de qualquer porte, combinando LLMs (Modelos de Linguagem de Grande Escala) para fornecer capacidades de perguntas e respostas verídicas, respaldadas por citações bem fundamentadas de diversos dados complexos formatados.
## 🎮 Demo
Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 Últimas Atualizações
- 18-12-2024 Atualiza o modelo de Análise de Layout de Documentos no Deepdoc.
- 04-12-2024 Adiciona suporte para pontuação de pagerank na base de conhecimento.
- 22-11-2024 Adiciona mais variáveis para o Agente.
- 01-11-2024 Adiciona extração de palavras-chave e geração de perguntas relacionadas aos blocos analisados para melhorar a precisão da recuperação.
- 22-08-2024 Suporta conversão de texto para comandos SQL via RAG.
- 02-08-2024 Suporta GraphRAG inspirado pelo [graphrag](https://github.com/microsoft/graphrag) e mapa mental.
## 🎉 Fique Ligado
⭐️ Dê uma estrela no nosso repositório para se manter atualizado com novas funcionalidades e melhorias empolgantes! Receba notificações instantâneas sobre novos lançamentos! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
## 🌟 Principais Funcionalidades
### 🍭 **"Qualidade entra, qualidade sai"**
- Extração de conhecimento baseada em [entendimento profundo de documentos](./deepdoc/README.md) a partir de dados não estruturados com formatos complicados.
- Encontra a "agulha no palheiro de dados" de literalmente tokens ilimitados.
### 🍱 **Fragmentação baseada em templates**
- Inteligente e explicável.
- Muitas opções de templates para escolher.
### 🌱 **Citações fundamentadas com menos alucinações**
- Visualização da fragmentação de texto para permitir intervenção humana.
- Visualização rápida das referências chave e citações rastreáveis para apoiar respostas fundamentadas.
### 🍔 **Compatibilidade com fontes de dados heterogêneas**
- Suporta Word, apresentações, excel, txt, imagens, cópias digitalizadas, dados estruturados, páginas da web e mais.
### 🛀 **Fluxo de trabalho RAG automatizado e sem esforço**
- Orquestração RAG simplificada voltada tanto para negócios pessoais quanto grandes empresas.
- Modelos LLM e de incorporação configuráveis.
- Múltiplas recuperações emparelhadas com reclassificação fundida.
- APIs intuitivas para integração sem problemas com os negócios.
## 🔎 Arquitetura do Sistema
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
</div>
## 🎬 Primeiros Passos
### 📝 Pré-requisitos
- CPU >= 4 núcleos
- RAM >= 16 GB
- Disco >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
> Se você não instalou o Docker na sua máquina local (Windows, Mac ou Linux), veja [Instalar Docker Engine](https://docs.docker.com/engine/install/).
### 🚀 Iniciar o servidor
1. Certifique-se de que `vm.max_map_count` >= 262144:
> Para verificar o valor de `vm.max_map_count`:
>
> ```bash
> $ sysctl vm.max_map_count
> ```
>
> Se necessário, redefina `vm.max_map_count` para um valor de pelo menos 262144:
>
> ```bash
> # Neste caso, defina para 262144:
> $ sudo sysctl -w vm.max_map_count=262144
> ```
>
> Essa mudança será resetada após a reinicialização do sistema. Para garantir que a alteração permaneça permanente, adicione ou atualize o valor de `vm.max_map_count` em **/etc/sysctl.conf**:
>
> ```bash
> vm.max_map_count=262144
> ```
2. Clone o repositório:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. Inicie o servidor usando as imagens Docker pré-compiladas:
> O comando abaixo baixa a edição `v0.15.1-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.15.1-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.1` para a edição completa `v0.15.1`.
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
```
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.15.1 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.15.1-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
4. Verifique o status do servidor após tê-lo iniciado:
```bash
$ docker logs -f ragflow-server
```
_O seguinte resultado confirma o lançamento bem-sucedido do sistema:_
```bash
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
* Rodando em todos os endereços (0.0.0.0)
* Rodando em http://127.0.0.1:9380
* Rodando em http://x.x.x.x:9380
INFO:werkzeug:Pressione CTRL+C para sair
```
> Se você pular essa etapa de confirmação e acessar diretamente o RAGFlow, seu navegador pode exibir um erro `network anormal`, pois, nesse momento, seu RAGFlow pode não estar totalmente inicializado.
5. No seu navegador, insira o endereço IP do seu servidor e faça login no RAGFlow.
> Com as configurações padrão, você só precisa digitar `http://IP_DO_SEU_MÁQUINA` (**sem** o número da porta), pois a porta HTTP padrão `80` pode ser omitida ao usar as configurações padrão.
6. Em [service_conf.yaml.template](./docker/service_conf.yaml.template), selecione a fábrica LLM desejada em `user_default_llm` e atualize o campo `API_KEY` com a chave de API correspondente.
> Consulte [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) para mais informações.
_O show está no ar!_
## 🔧 Configurações
Quando se trata de configurações do sistema, você precisará gerenciar os seguintes arquivos:
- [.env](./docker/.env): Contém as configurações fundamentais para o sistema, como `SVR_HTTP_PORT`, `MYSQL_PASSWORD` e `MINIO_PASSWORD`.
- [service_conf.yaml.template](./docker/service_conf.yaml.template): Configura os serviços de back-end. As variáveis de ambiente neste arquivo serão automaticamente preenchidas quando o contêiner Docker for iniciado. Quaisquer variáveis de ambiente definidas dentro do contêiner Docker estarão disponíveis para uso, permitindo personalizar o comportamento do serviço com base no ambiente de implantação.
- [docker-compose.yml](./docker/docker-compose.yml): O sistema depende do [docker-compose.yml](./docker/docker-compose.yml) para iniciar.
> O arquivo [./docker/README](./docker/README.md) fornece uma descrição detalhada das configurações do ambiente e dos serviços, que podem ser usadas como `${ENV_VARS}` no arquivo [service_conf.yaml.template](./docker/service_conf.yaml.template).
Para atualizar a porta HTTP de serviço padrão (80), vá até [docker-compose.yml](./docker/docker-compose.yml) e altere `80:80` para `<SUA_PORTA_DE_SERVIÇO>:80`.
Atualizações nas configurações acima exigem um reinício de todos os contêineres para que tenham efeito:
> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> ```
### Mudar o mecanismo de documentos de Elasticsearch para Infinity
O RAGFlow usa o Elasticsearch por padrão para armazenar texto completo e vetores. Para mudar para o [Infinity](https://github.com/infiniflow/infinity/), siga estas etapas:
1. Pare todos os contêineres em execução:
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
2. Defina `DOC_ENGINE` no **docker/.env** para `infinity`.
3. Inicie os contêineres:
```bash
$ docker compose -f docker/docker-compose.yml up -d
```
> [!ATENÇÃO]
> A mudança para o Infinity em uma máquina Linux/arm64 ainda não é oficialmente suportada.
## 🔧 Criar uma imagem Docker sem modelos de incorporação
Esta imagem tem cerca de 2 GB de tamanho e depende de serviços externos de LLM e incorporação.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Criar uma imagem Docker incluindo modelos de incorporação
Esta imagem tem cerca de 9 GB de tamanho. Como inclui modelos de incorporação, depende apenas de serviços externos de LLM.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Lançar o serviço a partir do código-fonte para desenvolvimento
1. Instale o `uv`, ou pule esta etapa se ele já estiver instalado:
```bash
pipx install uv
```
2. Clone o código-fonte e instale as dependências Python:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # instala os módulos Python dependentes do RAGFlow
```
3. Inicie os serviços dependentes (MinIO, Elasticsearch, Redis e MySQL) usando Docker Compose:
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
Adicione a seguinte linha ao arquivo `/etc/hosts` para resolver todos os hosts especificados em **docker/.env** para `127.0.0.1`:
```
127.0.0.1 es01 infinity mysql minio redis
```
4. Se não conseguir acessar o HuggingFace, defina a variável de ambiente `HF_ENDPOINT` para usar um site espelho:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. Lance o serviço de back-end:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
6. Instale as dependências do front-end:
```bash
cd web
npm install
```
7. Lance o serviço de front-end:
```bash
npm run dev
```
_O seguinte resultado confirma o lançamento bem-sucedido do sistema:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
## 📚 Documentação
- [Início rápido](https://ragflow.io/docs/dev/)
- [Guia do usuário](https://ragflow.io/docs/dev/category/guides)
- [Referências](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
## 📜 Roadmap
Veja o [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214)
## 🏄 Comunidade
- [Discord](https://discord.gg/4XxujFgUN7)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)
## 🙌 Contribuindo
O RAGFlow prospera por meio da colaboração de código aberto. Com esse espírito, abraçamos contribuições diversas da comunidade.
Se você deseja fazer parte, primeiro revise nossas [Diretrizes de Contribuição](./CONTRIBUTING.md).

View File

@ -9,7 +9,8 @@
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -30,7 +31,6 @@
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
@ -46,12 +46,12 @@
## 🎮 Demo 試用
請登入網址 [https://demo.ragflow.io](https://demo.ragflow.io) 試用 demo。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 近期更新
- 2024-12-18 升級了 Deepdoc 的文檔佈局分析模型。
@ -62,12 +62,13 @@
- 2024-08-02 支持 GraphRAG 啟發於 [graphrag](https://github.com/microsoft/graphrag) 和心智圖。
## 🎉 關注項目
⭐️點擊右上角的 Star 追蹤RAGFlow可以取得最新發布的即時通知 !🌟
⭐️ 點擊右上角的 Star 追蹤 RAGFlow可以取得最新發布的即時通知 !🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
## 🌟 主要功能
### 🍭 **"Quality in, quality out"**
@ -102,7 +103,7 @@
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
</div>
## 🎬快速開始
## 🎬 快速開始
### 📝 前提條件
@ -144,6 +145,7 @@
3. 進入 **docker** 資料夾,利用事先編譯好的 Docker 映像啟動伺服器:
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.15.1-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.15.1-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.15.1` 來下載 RAGFlow 鏡像的 `v0.15.1` 完整發行版。
```bash
$ cd ragflow
$ docker compose -f docker/docker-compose.yml up -d
@ -153,11 +155,12 @@
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
> [!TIP]
> 如果你遇到 Docker 映像檔拉不下來的問題,可以在 **docker/.env** 檔案內根據變數 `RAGFLOW_IMAGE` 的註解提示選擇華為雲或阿里雲的對應映像。
>
> - 華為雲鏡像名:`swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow`
> - 阿里雲鏡像名:`registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow`
@ -181,6 +184,7 @@
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> 如果您跳過這一步驟系統確認步驟就登入 RAGFlow你的瀏覽器有可能會提示 `network anormal``網路異常`,因為 RAGFlow 可能並未完全啟動成功。
5. 在你的瀏覽器中輸入你的伺服器對應的 IP 位址並登入 RAGFlow。
@ -205,7 +209,7 @@
> [./docker/README](./docker/README.md) 解釋了 [service_conf.yaml.template](./docker/service_conf.yaml.template) 用到的環境變數設定和服務配置。
如需更新預設的HTTP 服務連接埠(80), 可以在[docker-compose.yml](./docker/docker-compose.yml) 檔案中將配置`80:80` 改為`<YOUR_SERVING_PORT>:80`
如需更新預設的 HTTP 服務連接埠(80), 可以在[docker-compose.yml](./docker/docker-compose.yml) 檔案中將配置`80:80` 改為`<YOUR_SERVING_PORT>:80`
> 所有系統配置都需要透過系統重新啟動生效:
>
@ -234,7 +238,6 @@ RAGFlow 預設使用 Elasticsearch 儲存文字和向量資料. 如果要切換
> [!WARNING]
> Infinity 目前官方並未正式支援在 Linux/arm64 架構下的機器上運行.
## 🔧 原始碼編譯 Docker 映像(不含 embedding 模型)
本 Docker 映像大小約 2 GB 左右並且依賴外部的大模型和 embedding 服務。
@ -258,12 +261,14 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
## 🔨 以原始碼啟動服務
1. 安裝 uv。如已安裝可跳過此步驟
```bash
pipx install uv
export UV_INDEX=https://pypi.tuna.tsinghua.edu.cn/simple
```
2. 下載原始碼並安裝 Python 依賴:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -271,11 +276,13 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
```
3. 透過 Docker Compose 啟動依賴的服務MinIO, Elasticsearch, Redis, and MySQL
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
`/etc/hosts` 中加入以下程式碼,將 **conf/service_conf.yaml** 檔案中的所有 host 位址都解析為 `127.0.0.1`
```
127.0.0.1 es01 infinity mysql minio redis
```
@ -287,25 +294,29 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
```
5.啟動後端服務:
『`bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
『`bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
6. 安裝前端依賴:
『`bash
cd web
npm install
```
『`bash
cd web
npm install
```
7. 啟動前端服務:
『`bash
npm run dev
```
以下界面說明系統已成功啟動_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
```
## 📚 技術文檔
@ -339,4 +350,3 @@ RAGFlow 只有透過開源協作才能蓬勃發展。秉持這項精神,我們
<p align="center">
<img src="https://github.com/infiniflow/ragflow/assets/7248/bccf284f-46f2-4445-9809-8f1030fb7585" width=50% height=50%>
</p>

View File

@ -9,7 +9,8 @@
<a href="./README_zh.md">简体中文</a> |
<a href="./README_ja.md">日本語</a> |
<a href="./README_ko.md">한국어</a> |
<a href="./README_id.md">Bahasa Indonesia</a>
<a href="./README_id.md">Bahasa Indonesia</a> |
<a href="/README_pt_br.md">Português (Brasil)</a>
</p>
<p align="center">
@ -30,7 +31,6 @@
</a>
</p>
<h4 align="center">
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
@ -46,12 +46,12 @@
## 🎮 Demo 试用
请登录网址 [https://demo.ragflow.io](https://demo.ragflow.io) 试用 demo。
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/user-attachments/assets/504bbbf1-c9f7-4d83-8cc5-e9cb63c26db6" width="1200"/>
</div>
## 🔥 近期更新
- 2024-12-18 升级了 Deepdoc 的文档布局分析模型。
@ -62,12 +62,13 @@
- 2024-08-02 支持 GraphRAG 启发于 [graphrag](https://github.com/microsoft/graphrag) 和思维导图。
## 🎉 关注项目
⭐️点击右上角的 Star 关注RAGFlow可以获取最新发布的实时通知 !🌟
⭐️ 点击右上角的 Star 关注 RAGFlow可以获取最新发布的实时通知 !🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>
## 🌟 主要功能
### 🍭 **"Quality in, quality out"**
@ -154,11 +155,12 @@
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.15.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.15.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| nightly-slim | &approx;2 | ❌ | *Unstable* nightly build |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
> [!TIP]
> 如果你遇到 Docker 镜像拉不下来的问题,可以在 **docker/.env** 文件内根据变量 `RAGFLOW_IMAGE` 的注释提示选择华为云或者阿里云的相应镜像。
>
> - 华为云镜像名:`swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow`
> - 阿里云镜像名:`registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow`
@ -182,6 +184,7 @@
* Running on http://x.x.x.x:9380
INFO:werkzeug:Press CTRL+C to quit
```
> 如果您跳过这一步系统确认步骤就登录 RAGFlow你的浏览器有可能会提示 `network anormal``网络异常`,因为 RAGFlow 可能并未完全启动成功。
5. 在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。
@ -235,7 +238,6 @@ RAGFlow 默认使用 Elasticsearch 存储文本和向量数据. 如果要切换
> [!WARNING]
> Infinity 目前官方并未正式支持在 Linux/arm64 架构下的机器上运行.
## 🔧 源码编译 Docker 镜像(不含 embedding 模型)
本 Docker 镜像大小约 2 GB 左右并且依赖外部的大模型和 embedding 服务。
@ -259,12 +261,14 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
## 🔨 以源代码启动服务
1. 安装 uv。如已经安装可跳过本步骤
```bash
pipx install uv
export UV_INDEX=https://pypi.tuna.tsinghua.edu.cn/simple
```
2. 下载源代码并安装 Python 依赖:
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -272,11 +276,13 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
```
3. 通过 Docker Compose 启动依赖的服务MinIO, Elasticsearch, Redis, and MySQL
```bash
docker compose -f docker/docker-compose-base.yml up -d
```
`/etc/hosts` 中添加以下代码,将 **conf/service_conf.yaml** 文件中的所有 host 地址都解析为 `127.0.0.1`
```
127.0.0.1 es01 infinity mysql minio redis
```
@ -288,6 +294,7 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
```
5. 启动后端服务:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
@ -300,6 +307,7 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
npm install
```
7. 启动前端服务:
```bash
npm run dev
```
@ -340,4 +348,3 @@ RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们
<p align="center">
<img src="https://github.com/infiniflow/ragflow/assets/7248/bccf284f-46f2-4445-9809-8f1030fb7585" width=50% height=50%>
</p>

View File

@ -47,6 +47,7 @@ export const LanguageList = [
'Spanish',
'Vietnamese',
'Japanese',
'Portuguese BR',
];
export const LanguageMap = {
@ -57,6 +58,7 @@ export const LanguageMap = {
Spanish: 'Español',
Vietnamese: 'Tiếng việt',
Japanese: '日本語',
'Portuguese BR': 'Português BR',
};
export const LanguageTranslationMap = {
@ -67,6 +69,7 @@ export const LanguageTranslationMap = {
Spanish: 'es',
Vietnamese: 'vi',
Japanese: 'ja',
'Portuguese BR': 'pt-br',
};
export enum FileMimeType {

View File

@ -6,6 +6,7 @@ import translation_en from './en';
import translation_es from './es';
import translation_id from './id';
import translation_ja from './ja';
import translation_pt_br from './pt-br';
import { createTranslationTable, flattenObject } from './until';
import translation_vi from './vi';
import translation_zh from './zh';
@ -19,12 +20,14 @@ const resources = {
ja: translation_ja,
es: translation_es,
vi: translation_vi,
'pt-br': translation_pt_br,
};
const enFlattened = flattenObject(translation_en);
const viFlattened = flattenObject(translation_vi);
const esFlattened = flattenObject(translation_es);
const zhFlattened = flattenObject(translation_zh);
const jaFlattened = flattenObject(translation_ja);
const pt_brFlattened = flattenObject(translation_pt_br);
const zh_traditionalFlattened = flattenObject(translation_zh_traditional);
export const translationTable = createTranslationTable(
[
@ -34,8 +37,9 @@ export const translationTable = createTranslationTable(
zhFlattened,
zh_traditionalFlattened,
jaFlattened,
pt_brFlattened,
],
['English', 'Vietnamese', 'Spanish', 'zh', 'zh-TRADITIONAL', 'ja'],
['English', 'Vietnamese', 'Spanish', 'zh', 'zh-TRADITIONAL', 'ja', 'pt-br'],
);
i18n
.use(initReactI18next)
@ -44,7 +48,7 @@ i18n
detection: {
lookupLocalStorage: 'lng',
},
supportedLngs: ['en', 'zh', 'zh-TRADITIONAL', 'id', 'es', 'vi', 'ja'],
supportedLngs: ['en', 'zh', 'zh-TRADITIONAL', 'id', 'es', 'vi', 'ja', 'pt-br'],
resources,
fallbackLng: 'en',
interpolation: {

View File

@ -15,6 +15,7 @@ export default {
edit: 'Edit',
upload: 'Upload',
english: 'English',
portugeseBr: 'Portuguese (Brazil)',
chinese: 'Simplified Chinese',
traditionalChinese: 'Traditional Chinese',
language: 'Language',

View File

@ -16,6 +16,7 @@ export default {
upload: 'Subir',
english: 'Ingles',
spanish: 'Español',
portugeseBr: 'Portugués (Brasil)',
chinese: 'Chino simplificado',
traditionalChinese: 'Chino tradicional',
language: 'Idioma',

View File

@ -16,6 +16,7 @@ export default {
edit: 'Ubah',
upload: 'Unggah',
english: 'Inggris',
portugeseBr: 'Portugis (Brasil)',
chinese: 'Cina',
traditionalChinese: 'Cina Tradisional',
language: 'Bahasa',

View File

@ -15,6 +15,7 @@ export default {
edit: '編集',
upload: 'アップロード',
english: '英語',
portugeseBr: 'ポルトガル語 (ブラジル)',
chinese: '中国語(簡体字)',
traditionalChinese: '中国語(繁体字)',
language: '言語',

1099
web/src/locales/pt-br.ts Normal file

File diff suppressed because it is too large Load Diff

View File

@ -15,6 +15,7 @@ export default {
edit: 'Sửa',
upload: 'Tải lên',
english: 'Tiếng Anh',
portugueseBr: 'Tiếng Bồ Đào Nha (Brazil)',
chinese: 'Tiếng Trung giản thể',
traditionalChinese: 'Tiếng Trung phồn thể',
language: 'Ngôn ngữ',

View File

@ -15,6 +15,7 @@ export default {
edit: '編輯',
upload: '上傳',
english: '英語',
portugeseBr: '葡萄牙語 (巴西)',
chinese: '簡體中文',
traditionalChinese: '繁體中文',
language: '語言',

View File

@ -15,6 +15,7 @@ export default {
edit: '编辑',
upload: '上传',
english: '英文',
portugeseBr: '葡萄牙语 (巴西)',
chinese: '简体中文',
traditionalChinese: '繁体中文',
language: '语言',

View File

@ -12,6 +12,7 @@ function UserSettingLocale() {
'zh',
'zh-TRADITIONAL',
'ja',
'pt-br',
]}
/>
);