mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-18 02:35:55 +08:00
Fix batch size issue. (#3675)
### What problem does this PR solve? #3657 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
This commit is contained in:
parent
535b15ace9
commit
57208d8e53
@ -38,7 +38,7 @@ class Base(ABC):
|
|||||||
def __init__(self, key, model_name):
|
def __init__(self, key, model_name):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
raise NotImplementedError("Please implement encode method!")
|
raise NotImplementedError("Please implement encode method!")
|
||||||
|
|
||||||
def encode_queries(self, text: str):
|
def encode_queries(self, text: str):
|
||||||
@ -78,7 +78,7 @@ class DefaultEmbedding(Base):
|
|||||||
use_fp16=torch.cuda.is_available())
|
use_fp16=torch.cuda.is_available())
|
||||||
self._model = DefaultEmbedding._model
|
self._model = DefaultEmbedding._model
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
texts = [truncate(t, 2048) for t in texts]
|
texts = [truncate(t, 2048) for t in texts]
|
||||||
token_count = 0
|
token_count = 0
|
||||||
for t in texts:
|
for t in texts:
|
||||||
@ -101,7 +101,7 @@ class OpenAIEmbed(Base):
|
|||||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
texts = [truncate(t, 8191) for t in texts]
|
texts = [truncate(t, 8191) for t in texts]
|
||||||
res = self.client.embeddings.create(input=texts,
|
res = self.client.embeddings.create(input=texts,
|
||||||
model=self.model_name)
|
model=self.model_name)
|
||||||
@ -123,7 +123,7 @@ class LocalAIEmbed(Base):
|
|||||||
self.client = OpenAI(api_key="empty", base_url=base_url)
|
self.client = OpenAI(api_key="empty", base_url=base_url)
|
||||||
self.model_name = model_name.split("___")[0]
|
self.model_name = model_name.split("___")[0]
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
res = self.client.embeddings.create(input=texts, model=self.model_name)
|
res = self.client.embeddings.create(input=texts, model=self.model_name)
|
||||||
return (
|
return (
|
||||||
np.array([d.embedding for d in res.data]),
|
np.array([d.embedding for d in res.data]),
|
||||||
@ -200,7 +200,7 @@ class ZhipuEmbed(Base):
|
|||||||
self.client = ZhipuAI(api_key=key)
|
self.client = ZhipuAI(api_key=key)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
arr = []
|
arr = []
|
||||||
tks_num = 0
|
tks_num = 0
|
||||||
for txt in texts:
|
for txt in texts:
|
||||||
@ -221,7 +221,7 @@ class OllamaEmbed(Base):
|
|||||||
self.client = Client(host=kwargs["base_url"])
|
self.client = Client(host=kwargs["base_url"])
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
arr = []
|
arr = []
|
||||||
tks_num = 0
|
tks_num = 0
|
||||||
for txt in texts:
|
for txt in texts:
|
||||||
@ -252,7 +252,7 @@ class FastEmbed(Base):
|
|||||||
from fastembed import TextEmbedding
|
from fastembed import TextEmbedding
|
||||||
self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
|
self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
# Using the internal tokenizer to encode the texts and get the total
|
# Using the internal tokenizer to encode the texts and get the total
|
||||||
# number of tokens
|
# number of tokens
|
||||||
encodings = self._model.model.tokenizer.encode_batch(texts)
|
encodings = self._model.model.tokenizer.encode_batch(texts)
|
||||||
@ -278,7 +278,7 @@ class XinferenceEmbed(Base):
|
|||||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
res = self.client.embeddings.create(input=texts,
|
res = self.client.embeddings.create(input=texts,
|
||||||
model=self.model_name)
|
model=self.model_name)
|
||||||
return np.array([d.embedding for d in res.data]
|
return np.array([d.embedding for d in res.data]
|
||||||
@ -394,7 +394,7 @@ class MistralEmbed(Base):
|
|||||||
self.client = MistralClient(api_key=key)
|
self.client = MistralClient(api_key=key)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
texts = [truncate(t, 8196) for t in texts]
|
texts = [truncate(t, 8196) for t in texts]
|
||||||
res = self.client.embeddings(input=texts,
|
res = self.client.embeddings(input=texts,
|
||||||
model=self.model_name)
|
model=self.model_name)
|
||||||
@ -418,7 +418,7 @@ class BedrockEmbed(Base):
|
|||||||
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
|
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
|
||||||
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
|
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
texts = [truncate(t, 8196) for t in texts]
|
texts = [truncate(t, 8196) for t in texts]
|
||||||
embeddings = []
|
embeddings = []
|
||||||
token_count = 0
|
token_count = 0
|
||||||
@ -456,7 +456,7 @@ class GeminiEmbed(Base):
|
|||||||
genai.configure(api_key=key)
|
genai.configure(api_key=key)
|
||||||
self.model_name = 'models/' + model_name
|
self.model_name = 'models/' + model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
texts = [truncate(t, 2048) for t in texts]
|
texts = [truncate(t, 2048) for t in texts]
|
||||||
token_count = sum(num_tokens_from_string(text) for text in texts)
|
token_count = sum(num_tokens_from_string(text) for text in texts)
|
||||||
result = genai.embed_content(
|
result = genai.embed_content(
|
||||||
@ -541,7 +541,7 @@ class CoHereEmbed(Base):
|
|||||||
self.client = Client(api_key=key)
|
self.client = Client(api_key=key)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
res = self.client.embed(
|
res = self.client.embed(
|
||||||
texts=texts,
|
texts=texts,
|
||||||
model=self.model_name,
|
model=self.model_name,
|
||||||
@ -599,7 +599,7 @@ class SILICONFLOWEmbed(Base):
|
|||||||
self.base_url = base_url
|
self.base_url = base_url
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
payload = {
|
payload = {
|
||||||
"model": self.model_name,
|
"model": self.model_name,
|
||||||
"input": texts,
|
"input": texts,
|
||||||
@ -628,7 +628,7 @@ class ReplicateEmbed(Base):
|
|||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
self.client = Client(api_token=key)
|
self.client = Client(api_token=key)
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
res = self.client.run(self.model_name, input={"texts": json.dumps(texts)})
|
res = self.client.run(self.model_name, input={"texts": json.dumps(texts)})
|
||||||
return np.array(res), sum([num_tokens_from_string(text) for text in texts])
|
return np.array(res), sum([num_tokens_from_string(text) for text in texts])
|
||||||
|
|
||||||
@ -647,7 +647,7 @@ class BaiduYiyanEmbed(Base):
|
|||||||
self.client = qianfan.Embedding(ak=ak, sk=sk)
|
self.client = qianfan.Embedding(ak=ak, sk=sk)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
res = self.client.do(model=self.model_name, texts=texts).body
|
res = self.client.do(model=self.model_name, texts=texts).body
|
||||||
return (
|
return (
|
||||||
np.array([r["embedding"] for r in res["data"]]),
|
np.array([r["embedding"] for r in res["data"]]),
|
||||||
@ -669,7 +669,7 @@ class VoyageEmbed(Base):
|
|||||||
self.client = voyageai.Client(api_key=key)
|
self.client = voyageai.Client(api_key=key)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
res = self.client.embed(
|
res = self.client.embed(
|
||||||
texts=texts, model=self.model_name, input_type="document"
|
texts=texts, model=self.model_name, input_type="document"
|
||||||
)
|
)
|
||||||
@ -691,7 +691,7 @@ class HuggingFaceEmbed(Base):
|
|||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
self.base_url = base_url or "http://127.0.0.1:8080"
|
self.base_url = base_url or "http://127.0.0.1:8080"
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=16):
|
||||||
embeddings = []
|
embeddings = []
|
||||||
for text in texts:
|
for text in texts:
|
||||||
response = requests.post(
|
response = requests.post(
|
||||||
|
@ -54,7 +54,7 @@ class FulltextQueryer:
|
|||||||
def rmWWW(txt):
|
def rmWWW(txt):
|
||||||
patts = [
|
patts = [
|
||||||
(
|
(
|
||||||
r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*",
|
r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀|谁|哪位|哪个)是*",
|
||||||
"",
|
"",
|
||||||
),
|
),
|
||||||
(r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
|
(r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
|
||||||
|
@ -228,7 +228,7 @@ class Dealer:
|
|||||||
idf2 = np.array([idf(df(t), 1000000000) for t in tks])
|
idf2 = np.array([idf(df(t), 1000000000) for t in tks])
|
||||||
wts = (0.3 * idf1 + 0.7 * idf2) * \
|
wts = (0.3 * idf1 + 0.7 * idf2) * \
|
||||||
np.array([ner(t) * postag(t) for t in tks])
|
np.array([ner(t) * postag(t) for t in tks])
|
||||||
wts = [math.pow(s, 2) for s in wts]
|
wts = [s for s in wts]
|
||||||
tw = list(zip(tks, wts))
|
tw = list(zip(tks, wts))
|
||||||
else:
|
else:
|
||||||
for tk in tks:
|
for tk in tks:
|
||||||
@ -237,7 +237,7 @@ class Dealer:
|
|||||||
idf2 = np.array([idf(df(t), 1000000000) for t in tt])
|
idf2 = np.array([idf(df(t), 1000000000) for t in tt])
|
||||||
wts = (0.3 * idf1 + 0.7 * idf2) * \
|
wts = (0.3 * idf1 + 0.7 * idf2) * \
|
||||||
np.array([ner(t) * postag(t) for t in tt])
|
np.array([ner(t) * postag(t) for t in tt])
|
||||||
wts = [math.pow(s, 2) for s in wts]
|
wts = [s for s in wts]
|
||||||
tw.extend(zip(tt, wts))
|
tw.extend(zip(tt, wts))
|
||||||
|
|
||||||
S = np.sum([s for _, s in tw])
|
S = np.sum([s for _, s in tw])
|
||||||
|
Loading…
x
Reference in New Issue
Block a user