mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 14:10:01 +08:00
DRAFT: Miscellaneous updates to HTTP API. Tried to finish off Python API ref… (#2909)
…erence but failed. ### What problem does this PR solve? ### Type of change - [x] Documentation Update
This commit is contained in:
parent
1d6bcf5aa2
commit
5aec1e3e17
677
api/http_api.md
677
api/http_api.md
File diff suppressed because it is too large
Load Diff
@ -380,7 +380,7 @@ The ID of the document to retrieve. Defaults to `None`.
|
||||
|
||||
#### keywords: `str`
|
||||
|
||||
The keywords to match document titles. Defaults to `None`.
|
||||
The keywords used to match document titles. Defaults to `None`.
|
||||
|
||||
#### offset: `int`
|
||||
|
||||
@ -419,7 +419,7 @@ A `Document` object contains the following attributes:
|
||||
- `created_by`: `str` The creator of the document. Defaults to `""`.
|
||||
- `size`: `int` The document size in bytes. Defaults to `0`.
|
||||
- `token_count`: `int` The number of tokens in the document. Defaults to `0`.
|
||||
- `chunk_count`: `int` The number of chunks that the document is split into. Defaults to `0`.
|
||||
- `chunk_count`: `int` The number of chunks in the document. Defaults to `0`.
|
||||
- `progress`: `float` The current processing progress as a percentage. Defaults to `0.0`.
|
||||
- `progress_msg`: `str` A message indicating the current progress status. Defaults to `""`.
|
||||
- `process_begin_at`: `datetime` The start time of document processing. Defaults to `None`.
|
||||
@ -432,8 +432,8 @@ A `Document` object contains the following attributes:
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
dataset = rag.create_dataset(name="kb_1")
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
dataset = rag_object.create_dataset(name="kb_1")
|
||||
|
||||
filename1 = "~/ragflow.txt"
|
||||
blob = open(filename1 , "rb").read()
|
||||
@ -482,6 +482,8 @@ dataset.delete_documents(ids=["id_1","id_2"])
|
||||
DataSet.async_parse_documents(document_ids:list[str]) -> None
|
||||
```
|
||||
|
||||
Parses documents in the current dataset.
|
||||
|
||||
### Parameters
|
||||
|
||||
#### document_ids: `list[str]`, *Required*
|
||||
@ -490,7 +492,7 @@ The IDs of the documents to parse.
|
||||
|
||||
### Returns
|
||||
|
||||
- Success: No value is returned.
|
||||
- Success: No value is returned.????????????????????
|
||||
- Failure: `Exception`
|
||||
|
||||
### Examples
|
||||
@ -520,6 +522,8 @@ print("Async bulk parsing initiated.")
|
||||
DataSet.async_cancel_parse_documents(document_ids:list[str])-> None
|
||||
```
|
||||
|
||||
Stops parsing specified documents.
|
||||
|
||||
### Parameters
|
||||
|
||||
#### document_ids: `list[str]`, *Required*
|
||||
@ -554,27 +558,80 @@ print("Async bulk parsing cancelled.")
|
||||
|
||||
---
|
||||
|
||||
## Add chunk
|
||||
|
||||
```python
|
||||
Document.add_chunk(content:str) -> Chunk ?????????????????????
|
||||
```
|
||||
|
||||
Adds a chunk to the current document.
|
||||
|
||||
### Parameters
|
||||
|
||||
#### content: `str`, *Required*
|
||||
|
||||
The text content of the chunk.
|
||||
|
||||
#### important_keywords: `list[str]` ??????????????????????
|
||||
|
||||
The key terms or phrases to tag with the chunk.
|
||||
|
||||
### Returns
|
||||
|
||||
- Success: A `Chunk` object.
|
||||
- Failure: `Exception`.
|
||||
|
||||
A `Chunk` object contains the following attributes:
|
||||
|
||||
- `id`: `str`
|
||||
- `content`: `str` Content of the chunk.
|
||||
- `important_keywords`: `list[str]` A list of key terms or phrases to tag with the chunk.
|
||||
- `create_time`: `str` The time when the chunk was created (added to the document).
|
||||
- `create_timestamp`: `float` The timestamp representing the creation time of the chunk, expressed in seconds since January 1, 1970.
|
||||
- `knowledgebase_id`: `str` The ID of the associated dataset.
|
||||
- `document_name`: `str` The name of the associated document.
|
||||
- `document_id`: `str` The ID of the associated document.
|
||||
- `available`: `int`???? The chunk's availability status in the dataset. Value options:
|
||||
- `0`: Unavailable
|
||||
- `1`: Available
|
||||
|
||||
|
||||
### Examples
|
||||
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
dataset = rag_object.list_datasets(id="123")
|
||||
dtaset = dataset[0]
|
||||
doc = dataset.list_documents(id="wdfxb5t547d")
|
||||
doc = doc[0]
|
||||
chunk = doc.add_chunk(content="xxxxxxx")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## List chunks
|
||||
|
||||
```python
|
||||
Document.list_chunks(keywords: str = None, offset: int = 0, limit: int = -1, id : str = None) -> list[Chunk]
|
||||
```
|
||||
|
||||
Retrieves a list of document chunks.
|
||||
Retrieves a list of chunks from the current document.
|
||||
|
||||
### Parameters
|
||||
|
||||
#### keywords: `str`
|
||||
|
||||
List chunks whose name has the given keywords. Defaults to `None`
|
||||
The keywords used to match chunk content. Defaults to `None`
|
||||
|
||||
#### offset: `int`
|
||||
|
||||
The starting index for the chunks to retrieve. Defaults to `1`
|
||||
The starting index for the chunks to retrieve. Defaults to `1`??????
|
||||
|
||||
#### limit
|
||||
|
||||
The maximum number of chunks to retrieve. Default: `30`
|
||||
The maximum number of chunks to retrieve. Default: `30`?????????
|
||||
|
||||
#### id
|
||||
|
||||
@ -598,42 +655,9 @@ for chunk in doc.list_chunks(keywords="rag", offset=0, limit=12):
|
||||
print(chunk)
|
||||
```
|
||||
|
||||
## Add chunk
|
||||
|
||||
```python
|
||||
Document.add_chunk(content:str) -> Chunk
|
||||
```
|
||||
|
||||
### Parameters
|
||||
|
||||
#### content: *Required*
|
||||
|
||||
The text content of the chunk.
|
||||
|
||||
#### important_keywords :`list[str]`
|
||||
|
||||
List the key terms or phrases that are significant or central to the chunk's content.
|
||||
|
||||
### Returns
|
||||
|
||||
chunk
|
||||
|
||||
### Examples
|
||||
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
dataset = rag.list_datasets(id="123")
|
||||
dtaset = dataset[0]
|
||||
doc = dataset.list_documents(id="wdfxb5t547d")
|
||||
doc = doc[0]
|
||||
chunk = doc.add_chunk(content="xxxxxxx")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Delete chunk
|
||||
## Delete chunks
|
||||
|
||||
```python
|
||||
Document.delete_chunks(chunk_ids: list[str])
|
||||
@ -657,10 +681,10 @@ The IDs of the chunks to delete. Defaults to `None`. If not specified, all chunk
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
ds = rag.list_datasets(id="123")
|
||||
ds = ds[0]
|
||||
doc = ds.list_documents(id="wdfxb5t547d")
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
dataset = rag_object.list_datasets(id="123")
|
||||
dataset = dataset[0]
|
||||
doc = dataset.list_documents(id="wdfxb5t547d")
|
||||
doc = doc[0]
|
||||
chunk = doc.add_chunk(content="xxxxxxx")
|
||||
doc.delete_chunks(["id_1","id_2"])
|
||||
@ -683,7 +707,7 @@ Updates content or configurations for the current chunk.
|
||||
A dictionary representing the attributes to update, with the following keys:
|
||||
|
||||
- `"content"`: `str` Content of the chunk.
|
||||
- `"important_keywords"`: `list[str]` A list of key terms to attach to the chunk.
|
||||
- `"important_keywords"`: `list[str]` A list of key terms or phrases to tag with the chunk.
|
||||
- `"available"`: `int` The chunk's availability status in the dataset. Value options:
|
||||
- `0`: Unavailable
|
||||
- `1`: Available
|
||||
@ -715,13 +739,15 @@ chunk.update({"content":"sdfx..."})
|
||||
RAGFlow.retrieve(question:str="", datasets:list[str]=None, document=list[str]=None, offset:int=1, limit:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> list[Chunk]
|
||||
```
|
||||
|
||||
???????
|
||||
|
||||
### Parameters
|
||||
|
||||
#### question: `str` *Required*
|
||||
|
||||
The user query or query keywords. Defaults to `""`.
|
||||
|
||||
#### datasets: `list[str]`, *Required*
|
||||
#### datasets: `list[str]`, *Required*?????
|
||||
|
||||
The datasets to search from.
|
||||
|
||||
@ -735,7 +761,7 @@ The starting index for the documents to retrieve. Defaults to `0`??????.
|
||||
|
||||
#### limit: `int`
|
||||
|
||||
The maximum number of chunks to retrieve. Defaults to `6`.
|
||||
The maximum number of chunks to retrieve. Defaults to `6`.???????????????
|
||||
|
||||
#### Similarity_threshold: `float`
|
||||
|
||||
@ -749,18 +775,18 @@ The weight of vector cosine similarity. Defaults to `0.3`. If x represents the v
|
||||
|
||||
The number of chunks engaged in vector cosine computaton. Defaults to `1024`.
|
||||
|
||||
#### rerank_id
|
||||
#### rerank_id: `str`
|
||||
|
||||
The ID of the rerank model. Defaults to `None`.
|
||||
The ID of the rerank model. Defaults to `None`.
|
||||
|
||||
#### keyword
|
||||
#### keyword: `bool`
|
||||
|
||||
Indicates whether keyword-based matching is enabled:
|
||||
|
||||
- `True`: Enabled.
|
||||
- `False`: Disabled.
|
||||
- `False`: Disabled (default).
|
||||
|
||||
#### highlight:`bool`
|
||||
#### highlight: `bool`
|
||||
|
||||
Specifying whether to enable highlighting of matched terms in the results (True) or not (False).
|
||||
|
||||
@ -775,16 +801,16 @@ Specifying whether to enable highlighting of matched terms in the results (True)
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
ds = rag_object.list_datasets(name="ragflow")
|
||||
ds = ds[0]
|
||||
dataset = rag_object.list_datasets(name="ragflow")
|
||||
dataset = dataset[0]
|
||||
name = 'ragflow_test.txt'
|
||||
path = './test_data/ragflow_test.txt'
|
||||
rag_object.create_document(ds, name=name, blob=open(path, "rb").read())
|
||||
doc = ds.list_documents(name=name)
|
||||
rag_object.create_document(dataset, name=name, blob=open(path, "rb").read())
|
||||
doc = dataset.list_documents(name=name)
|
||||
doc = doc[0]
|
||||
ds.async_parse_documents([doc.id])
|
||||
dataset.async_parse_documents([doc.id])
|
||||
for c in rag_object.retrieve(question="What's ragflow?",
|
||||
datasets=[ds.id], documents=[doc.id],
|
||||
datasets=[dataset.id], documents=[doc.id],
|
||||
offset=1, limit=30, similarity_threshold=0.2,
|
||||
vector_similarity_weight=0.3,
|
||||
top_k=1024
|
||||
@ -818,11 +844,11 @@ Creates a chat assistant.
|
||||
|
||||
The following shows the attributes of a `Chat` object:
|
||||
|
||||
#### name: *Required*
|
||||
#### name: `str`, *Required*????????
|
||||
|
||||
The name of the chat assistant. Defaults to `"assistant"`.
|
||||
|
||||
#### avatar
|
||||
#### avatar: `str`
|
||||
|
||||
Base64 encoding of the avatar. Defaults to `""`.
|
||||
|
||||
@ -830,7 +856,7 @@ Base64 encoding of the avatar. Defaults to `""`.
|
||||
|
||||
The IDs of the associated datasets. Defaults to `[""]`.
|
||||
|
||||
#### llm
|
||||
#### llm: `Chat.LLM`
|
||||
|
||||
The llm of the created chat. Defaults to `None`. When the value is `None`, a dictionary with the following values will be generated as the default.
|
||||
|
||||
@ -849,7 +875,7 @@ An `LLM` object contains the following attributes:
|
||||
- `max_token`, `int`
|
||||
This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words). Defaults to `512`.
|
||||
|
||||
#### Prompt
|
||||
#### prompt: `Chat.Prompt`
|
||||
|
||||
Instructions for the LLM to follow. A `Prompt` object contains the following attributes:
|
||||
|
||||
@ -876,17 +902,17 @@ Instructions for the LLM to follow. A `Prompt` object contains the following at
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
kbs = rag.list_datasets(name="kb_1")
|
||||
list_kb=[]
|
||||
for kb in kbs:
|
||||
list_kb.append(kb.id)
|
||||
assi = rag.create_chat("Miss R", knowledgebases=list_kb)
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
datasets = rag_object.list_datasets(name="kb_1")
|
||||
dataset_ids = []
|
||||
for dataset in datasets:
|
||||
dataset_ids.append(dataset.id)
|
||||
assistant = rag_object.create_chat("Miss R", knowledgebases=dataset_ids)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Update chat
|
||||
## Update chat assistant
|
||||
|
||||
```python
|
||||
Chat.update(update_message: dict)
|
||||
@ -934,15 +960,15 @@ A dictionary representing the attributes to update, with the following keys:
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
knowledge_base = rag.list_datasets(name="kb_1")
|
||||
assistant = rag.create_chat("Miss R", knowledgebases=knowledge_base)
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
datasets = rag_object.list_datasets(name="kb_1")
|
||||
assistant = rag_object.create_chat("Miss R", knowledgebases=datasets)
|
||||
assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Delete chats
|
||||
## Delete chat assistants
|
||||
|
||||
```python
|
||||
RAGFlow.delete_chats(ids: list[str] = None)
|
||||
@ -966,13 +992,13 @@ The IDs of the chat assistants to delete. Defaults to `None`. If not specified,
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
rag.delete_chats(ids=["id_1","id_2"])
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
rag_object.delete_chats(ids=["id_1","id_2"])
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## List chats
|
||||
## List chat assistants
|
||||
|
||||
```python
|
||||
RAGFlow.list_chats(
|
||||
@ -989,29 +1015,32 @@ Retrieves a list of chat assistants.
|
||||
|
||||
### Parameters
|
||||
|
||||
#### page
|
||||
#### page: `int`
|
||||
|
||||
Specifies the page on which the chat assistants will be displayed. Defaults to `1`.
|
||||
|
||||
#### page_size
|
||||
#### page_size: `int`
|
||||
|
||||
The number of chat assistants on each page. Defaults to `1024`.
|
||||
|
||||
#### order_by
|
||||
#### orderby: `str`
|
||||
|
||||
The attribute by which the results are sorted. Defaults to `"create_time"`.
|
||||
The attribute by which the results are sorted. Available options:
|
||||
|
||||
#### desc
|
||||
- `"create_time"` (default)
|
||||
- `"update_time"`
|
||||
|
||||
#### desc: `bool`
|
||||
|
||||
Indicates whether the retrieved chat assistants should be sorted in descending order. Defaults to `True`.
|
||||
|
||||
#### id: `string`
|
||||
#### id: `str`
|
||||
|
||||
The ID of the chat to retrieve. Defaults to `None`.
|
||||
The ID of the chat assistant to retrieve. Defaults to `None`.
|
||||
|
||||
#### name: `string`
|
||||
#### name: `str`
|
||||
|
||||
The name of the chat to retrieve. Defaults to `None`.
|
||||
The name of the chat assistant to retrieve. Defaults to `None`.
|
||||
|
||||
### Returns
|
||||
|
||||
@ -1031,7 +1060,7 @@ for assistant in rag_object.list_chats():
|
||||
---
|
||||
|
||||
:::tip API GROUPING
|
||||
Chat-session APIs
|
||||
Chat Session APIs
|
||||
:::
|
||||
|
||||
---
|
||||
@ -1046,7 +1075,7 @@ Creates a chat session.
|
||||
|
||||
### Parameters
|
||||
|
||||
#### name
|
||||
#### name: `str`
|
||||
|
||||
The name of the chat session to create.
|
||||
|
||||
@ -1064,12 +1093,14 @@ The name of the chat session to create.
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
assistant = rag.list_chats(name="Miss R")
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
assistant = rag_object.list_chats(name="Miss R")
|
||||
assistant = assistant[0]
|
||||
session = assistant.create_session()
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Update session
|
||||
|
||||
```python
|
||||
@ -1096,8 +1127,8 @@ A dictionary representing the attributes to update, with only one key:
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
assistant = rag.list_chats(name="Miss R")
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
assistant = rag_object.list_chats(name="Miss R")
|
||||
assistant = assistant[0]
|
||||
session = assistant.create_session("session_name")
|
||||
session.update({"name": "updated_name"})
|
||||
@ -1105,6 +1136,101 @@ session.update({"name": "updated_name"})
|
||||
|
||||
---
|
||||
|
||||
## List sessions
|
||||
|
||||
```python
|
||||
Chat.list_sessions(
|
||||
page: int = 1,
|
||||
page_size: int = 1024,
|
||||
orderby: str = "create_time",
|
||||
desc: bool = True,
|
||||
id: str = None,
|
||||
name: str = None
|
||||
) -> list[Session]
|
||||
```
|
||||
|
||||
Lists sessions associated with the current chat assistant.
|
||||
|
||||
### Parameters
|
||||
|
||||
#### page: `int`
|
||||
|
||||
Specifies the page on which the sessions will be displayed. Defaults to `1`.
|
||||
|
||||
#### page_size: `int`
|
||||
|
||||
The number of sessions on each page. Defaults to `1024`.
|
||||
|
||||
#### orderby: `str`
|
||||
|
||||
The field by which sessions should be sorted. Available options:
|
||||
|
||||
- `"create_time"` (default)
|
||||
- `"update_time"`
|
||||
|
||||
#### desc: `bool`
|
||||
|
||||
Indicates whether the retrieved sessions should be sorted in descending order. Defaults to `True`.
|
||||
|
||||
#### id: `str`
|
||||
|
||||
The ID of the chat session to retrieve. Defaults to `None`.
|
||||
|
||||
#### name: `str`
|
||||
|
||||
The name of the chat session to retrieve. Defaults to `None`.
|
||||
|
||||
### Returns
|
||||
|
||||
- Success: A list of `Session` objects associated with the current chat assistant.
|
||||
- Failure: `Exception`.
|
||||
|
||||
### Examples
|
||||
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
assistant = rag_object.list_chats(name="Miss R")
|
||||
assistant = assistant[0]
|
||||
for session in assistant.list_sessions():
|
||||
print(session)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Delete sessions
|
||||
|
||||
```python
|
||||
Chat.delete_sessions(ids:list[str] = None)
|
||||
```
|
||||
|
||||
Deletes sessions by ID.
|
||||
|
||||
### Parameters
|
||||
|
||||
#### ids: `list[str]`
|
||||
|
||||
The IDs of the sessions to delete. Defaults to `None`. If not specified, all sessions associated with the current chat assistant will be deleted.
|
||||
|
||||
### Returns
|
||||
|
||||
- Success: No value is returned.
|
||||
- Failure: `Exception`
|
||||
|
||||
### Examples
|
||||
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
assistant = rag_object.list_chats(name="Miss R")
|
||||
assistant = assistant[0]
|
||||
assistant.delete_sessions(ids=["id_1","id_2"])
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Chat
|
||||
|
||||
```python
|
||||
@ -1115,11 +1241,11 @@ Asks a question to start a conversation.
|
||||
|
||||
### Parameters
|
||||
|
||||
#### question *Required*
|
||||
#### question: `str` *Required*
|
||||
|
||||
The question to start an AI chat. Defaults to `None`.
|
||||
The question to start an AI chat.
|
||||
|
||||
#### stream
|
||||
#### stream: `str`
|
||||
|
||||
Indicates whether to output responses in a streaming way:
|
||||
|
||||
@ -1172,8 +1298,8 @@ A list of `Chunk` objects representing references to the message, each containin
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
assistant = rag.list_chats(name="Miss R")
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
assistant = rag_object.list_chats(name="Miss R")
|
||||
assistant = assistant[0]
|
||||
session = assistant.create_session()
|
||||
|
||||
@ -1188,99 +1314,4 @@ while True:
|
||||
for ans in session.ask(question, stream=True):
|
||||
print(answer.content[len(cont):], end='', flush=True)
|
||||
cont = answer.content
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## List sessions
|
||||
|
||||
```python
|
||||
Chat.list_sessions(
|
||||
page: int = 1,
|
||||
page_size: int = 1024,
|
||||
orderby: str = "create_time",
|
||||
desc: bool = True,
|
||||
id: str = None,
|
||||
name: str = None
|
||||
) -> list[Session]
|
||||
```
|
||||
|
||||
Lists sessions associated with the current chat assistant.
|
||||
|
||||
### Parameters
|
||||
|
||||
#### page
|
||||
|
||||
Specifies the page on which the sessions will be displayed. Defaults to `1`.
|
||||
|
||||
#### page_size
|
||||
|
||||
The number of sessions on each page. Defaults to `1024`.
|
||||
|
||||
#### orderby
|
||||
|
||||
The field by which sessions should be sorted. Available options:
|
||||
|
||||
- `"create_time"` (default)
|
||||
- `"update_time"`
|
||||
|
||||
#### desc
|
||||
|
||||
Indicates whether the retrieved sessions should be sorted in descending order. Defaults to `True`.
|
||||
|
||||
#### id
|
||||
|
||||
The ID of the chat session to retrieve. Defaults to `None`.
|
||||
|
||||
#### name
|
||||
|
||||
The name of the chat to retrieve. Defaults to `None`.
|
||||
|
||||
### Returns
|
||||
|
||||
- Success: A list of `Session` objects associated with the current chat assistant.
|
||||
- Failure: `Exception`.
|
||||
|
||||
### Examples
|
||||
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
assistant = rag_object.list_chats(name="Miss R")
|
||||
assistant = assistant[0]
|
||||
for session in assistant.list_sessions():
|
||||
print(session)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Delete sessions
|
||||
|
||||
```python
|
||||
Chat.delete_sessions(ids:list[str] = None)
|
||||
```
|
||||
|
||||
Deletes sessions by ID.
|
||||
|
||||
### Parameters
|
||||
|
||||
#### ids: `list[str]`
|
||||
|
||||
The IDs of the sessions to delete. Defaults to `None`. If not specified, all sessions associated with the current chat assistant will be deleted.
|
||||
|
||||
### Returns
|
||||
|
||||
- Success: No value is returned.
|
||||
- Failure: `Exception`
|
||||
|
||||
### Examples
|
||||
|
||||
```python
|
||||
from ragflow import RAGFlow
|
||||
|
||||
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
assistant = rag.list_chats(name="Miss R")
|
||||
assistant = assistant[0]
|
||||
assistant.delete_sessions(ids=["id_1","id_2"])
|
||||
```
|
Loading…
x
Reference in New Issue
Block a user