mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-19 17:59:11 +08:00
Add Support for AWS Bedrock (#1408)
### What problem does this PR solve? #308 ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: KevinHuSh <kevinhu.sh@gmail.com>
This commit is contained in:
parent
b3ebc66b13
commit
6144a109ab
@ -109,15 +109,23 @@ def set_api_key():
|
||||
def add_llm():
|
||||
req = request.json
|
||||
factory = req["llm_factory"]
|
||||
# For VolcEngine, due to its special authentication method
|
||||
# Assemble volc_ak, volc_sk, endpoint_id into api_key
|
||||
|
||||
if factory == "VolcEngine":
|
||||
# For VolcEngine, due to its special authentication method
|
||||
# Assemble volc_ak, volc_sk, endpoint_id into api_key
|
||||
temp = list(eval(req["llm_name"]).items())[0]
|
||||
llm_name = temp[0]
|
||||
endpoint_id = temp[1]
|
||||
api_key = '{' + f'"volc_ak": "{req.get("volc_ak", "")}", ' \
|
||||
f'"volc_sk": "{req.get("volc_sk", "")}", ' \
|
||||
f'"ep_id": "{endpoint_id}", ' + '}'
|
||||
elif factory == "Bedrock":
|
||||
# For Bedrock, due to its special authentication method
|
||||
# Assemble bedrock_ak, bedrock_sk, bedrock_region
|
||||
llm_name = req["llm_name"]
|
||||
api_key = '{' + f'"bedrock_ak": "{req.get("bedrock_ak", "")}", ' \
|
||||
f'"bedrock_sk": "{req.get("bedrock_sk", "")}", ' \
|
||||
f'"bedrock_region": "{req.get("bedrock_region", "")}", ' + '}'
|
||||
else:
|
||||
llm_name = req["llm_name"]
|
||||
api_key = "xxxxxxxxxxxxxxx"
|
||||
@ -134,7 +142,9 @@ def add_llm():
|
||||
msg = ""
|
||||
if llm["model_type"] == LLMType.EMBEDDING.value:
|
||||
mdl = EmbeddingModel[factory](
|
||||
key=None, model_name=llm["llm_name"], base_url=llm["api_base"])
|
||||
key=llm['api_key'] if factory in ["VolcEngine", "Bedrock"] else None,
|
||||
model_name=llm["llm_name"],
|
||||
base_url=llm["api_base"])
|
||||
try:
|
||||
arr, tc = mdl.encode(["Test if the api key is available"])
|
||||
if len(arr[0]) == 0 or tc == 0:
|
||||
@ -143,7 +153,7 @@ def add_llm():
|
||||
msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
|
||||
elif llm["model_type"] == LLMType.CHAT.value:
|
||||
mdl = ChatModel[factory](
|
||||
key=llm['api_key'] if factory == "VolcEngine" else None,
|
||||
key=llm['api_key'] if factory in ["VolcEngine", "Bedrock"] else None,
|
||||
model_name=llm["llm_name"],
|
||||
base_url=llm["api_base"]
|
||||
)
|
||||
|
@ -170,6 +170,11 @@ factory_infos = [{
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
||||
"status": "1",
|
||||
},{
|
||||
"name": "Bedrock",
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING",
|
||||
"status": "1",
|
||||
}
|
||||
# {
|
||||
# "name": "文心一言",
|
||||
@ -730,7 +735,170 @@ def init_llm_factory():
|
||||
"max_tokens": 765,
|
||||
"model_type": LLMType.IMAGE2TEXT.value
|
||||
},
|
||||
|
||||
# ------------------------ Bedrock -----------------------
|
||||
{
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "ai21.j2-ultra-v1",
|
||||
"tags": "LLM,CHAT,8k",
|
||||
"max_tokens": 8191,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "ai21.j2-mid-v1",
|
||||
"tags": "LLM,CHAT,8k",
|
||||
"max_tokens": 8191,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "cohere.command-text-v14",
|
||||
"tags": "LLM,CHAT,4k",
|
||||
"max_tokens": 4096,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "cohere.command-light-text-v14",
|
||||
"tags": "LLM,CHAT,4k",
|
||||
"max_tokens": 4096,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "cohere.command-r-v1:0",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128 * 1024,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "cohere.command-r-plus-v1:0",
|
||||
"tags": "LLM,CHAT,128k",
|
||||
"max_tokens": 128000,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "anthropic.claude-v2",
|
||||
"tags": "LLM,CHAT,100k",
|
||||
"max_tokens": 100 * 1024,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "anthropic.claude-v2:1",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200 * 1024,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200 * 1024,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "anthropic.claude-3-5-sonnet-20240620-v1:0",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200 * 1024,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "anthropic.claude-3-haiku-20240307-v1:0",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200 * 1024,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "anthropic.claude-3-opus-20240229-v1:0",
|
||||
"tags": "LLM,CHAT,200k",
|
||||
"max_tokens": 200 * 1024,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "anthropic.claude-instant-v1",
|
||||
"tags": "LLM,CHAT,100k",
|
||||
"max_tokens": 100 * 1024,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "amazon.titan-text-express-v1",
|
||||
"tags": "LLM,CHAT,8k",
|
||||
"max_tokens": 8192,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "amazon.titan-text-premier-v1:0",
|
||||
"tags": "LLM,CHAT,32k",
|
||||
"max_tokens": 32 * 1024,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "amazon.titan-text-lite-v1",
|
||||
"tags": "LLM,CHAT,4k",
|
||||
"max_tokens": 4096,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "meta.llama2-13b-chat-v1",
|
||||
"tags": "LLM,CHAT,4k",
|
||||
"max_tokens": 4096,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "meta.llama2-70b-chat-v1",
|
||||
"tags": "LLM,CHAT,4k",
|
||||
"max_tokens": 4096,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "meta.llama3-8b-instruct-v1:0",
|
||||
"tags": "LLM,CHAT,8k",
|
||||
"max_tokens": 8192,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "meta.llama3-70b-instruct-v1:0",
|
||||
"tags": "LLM,CHAT,8k",
|
||||
"max_tokens": 8192,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "mistral.mistral-7b-instruct-v0:2",
|
||||
"tags": "LLM,CHAT,8k",
|
||||
"max_tokens": 8192,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "mistral.mixtral-8x7b-instruct-v0:1",
|
||||
"tags": "LLM,CHAT,4k",
|
||||
"max_tokens": 4096,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "mistral.mistral-large-2402-v1:0",
|
||||
"tags": "LLM,CHAT,8k",
|
||||
"max_tokens": 8192,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "mistral.mistral-small-2402-v1:0",
|
||||
"tags": "LLM,CHAT,8k",
|
||||
"max_tokens": 8192,
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "amazon.titan-embed-text-v2:0",
|
||||
"tags": "TEXT EMBEDDING",
|
||||
"max_tokens": 8192,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "cohere.embed-english-v3",
|
||||
"tags": "TEXT EMBEDDING",
|
||||
"max_tokens": 2048,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
}, {
|
||||
"fid": factory_infos[16]["name"],
|
||||
"llm_name": "cohere.embed-multilingual-v3",
|
||||
"tags": "TEXT EMBEDDING",
|
||||
"max_tokens": 2048,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
},
|
||||
]
|
||||
for info in factory_infos:
|
||||
try:
|
||||
|
@ -31,7 +31,8 @@ EmbeddingModel = {
|
||||
"BaiChuan": BaiChuanEmbed,
|
||||
"Jina": JinaEmbed,
|
||||
"BAAI": DefaultEmbedding,
|
||||
"Mistral": MistralEmbed
|
||||
"Mistral": MistralEmbed,
|
||||
"Bedrock": BedrockEmbed
|
||||
}
|
||||
|
||||
|
||||
@ -58,7 +59,8 @@ ChatModel = {
|
||||
"VolcEngine": VolcEngineChat,
|
||||
"BaiChuan": BaiChuanChat,
|
||||
"MiniMax": MiniMaxChat,
|
||||
"Mistral": MistralChat
|
||||
"Mistral": MistralChat,
|
||||
"Bedrock": BedrockChat
|
||||
}
|
||||
|
||||
|
||||
|
@ -533,3 +533,90 @@ class MistralChat(Base):
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield total_tokens
|
||||
|
||||
|
||||
class BedrockChat(Base):
|
||||
|
||||
def __init__(self, key, model_name, **kwargs):
|
||||
import boto3
|
||||
from botocore.exceptions import ClientError
|
||||
self.bedrock_ak = eval(key).get('bedrock_ak', '')
|
||||
self.bedrock_sk = eval(key).get('bedrock_sk', '')
|
||||
self.bedrock_region = eval(key).get('bedrock_region', '')
|
||||
self.model_name = model_name
|
||||
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
|
||||
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
if system:
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
for k in list(gen_conf.keys()):
|
||||
if k not in ["temperature", "top_p", "max_tokens"]:
|
||||
del gen_conf[k]
|
||||
if "max_tokens" in gen_conf:
|
||||
gen_conf["maxTokens"] = gen_conf["max_tokens"]
|
||||
_ = gen_conf.pop("max_tokens")
|
||||
if "top_p" in gen_conf:
|
||||
gen_conf["topP"] = gen_conf["top_p"]
|
||||
_ = gen_conf.pop("top_p")
|
||||
|
||||
try:
|
||||
# Send the message to the model, using a basic inference configuration.
|
||||
response = self.client.converse(
|
||||
modelId=self.model_name,
|
||||
messages=history,
|
||||
inferenceConfig=gen_conf
|
||||
)
|
||||
|
||||
# Extract and print the response text.
|
||||
ans = response["output"]["message"]["content"][0]["text"]
|
||||
return ans, num_tokens_from_string(ans)
|
||||
|
||||
except (ClientError, Exception) as e:
|
||||
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf):
|
||||
if system:
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
for k in list(gen_conf.keys()):
|
||||
if k not in ["temperature", "top_p", "max_tokens"]:
|
||||
del gen_conf[k]
|
||||
if "max_tokens" in gen_conf:
|
||||
gen_conf["maxTokens"] = gen_conf["max_tokens"]
|
||||
_ = gen_conf.pop("max_tokens")
|
||||
if "top_p" in gen_conf:
|
||||
gen_conf["topP"] = gen_conf["top_p"]
|
||||
_ = gen_conf.pop("top_p")
|
||||
|
||||
if self.model_name.split('.')[0] == 'ai21':
|
||||
try:
|
||||
response = self.client.converse(
|
||||
modelId=self.model_name,
|
||||
messages=history,
|
||||
inferenceConfig=gen_conf
|
||||
)
|
||||
ans = response["output"]["message"]["content"][0]["text"]
|
||||
return ans, num_tokens_from_string(ans)
|
||||
|
||||
except (ClientError, Exception) as e:
|
||||
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
|
||||
|
||||
ans = ""
|
||||
try:
|
||||
# Send the message to the model, using a basic inference configuration.
|
||||
streaming_response = self.client.converse_stream(
|
||||
modelId=self.model_name,
|
||||
messages=history,
|
||||
inferenceConfig=gen_conf
|
||||
)
|
||||
|
||||
# Extract and print the streamed response text in real-time.
|
||||
for resp in streaming_response["stream"]:
|
||||
if "contentBlockDelta" in resp:
|
||||
ans += resp["contentBlockDelta"]["delta"]["text"]
|
||||
yield ans
|
||||
|
||||
except (ClientError, Exception) as e:
|
||||
yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"
|
||||
|
||||
yield num_tokens_from_string(ans)
|
||||
|
@ -374,3 +374,48 @@ class MistralEmbed(Base):
|
||||
res = self.client.embeddings(input=[truncate(text, 8196)],
|
||||
model=self.model_name)
|
||||
return np.array(res.data[0].embedding), res.usage.total_tokens
|
||||
|
||||
|
||||
class BedrockEmbed(Base):
|
||||
def __init__(self, key, model_name,
|
||||
**kwargs):
|
||||
import boto3
|
||||
self.bedrock_ak = eval(key).get('bedrock_ak', '')
|
||||
self.bedrock_sk = eval(key).get('bedrock_sk', '')
|
||||
self.bedrock_region = eval(key).get('bedrock_region', '')
|
||||
self.model_name = model_name
|
||||
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
|
||||
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
|
||||
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
texts = [truncate(t, 8196) for t in texts]
|
||||
embeddings = []
|
||||
token_count = 0
|
||||
for text in texts:
|
||||
if self.model_name.split('.')[0] == 'amazon':
|
||||
body = {"inputText": text}
|
||||
elif self.model_name.split('.')[0] == 'cohere':
|
||||
body = {"texts": [text], "input_type": 'search_document'}
|
||||
|
||||
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
|
||||
model_response = json.loads(response["body"].read())
|
||||
embeddings.extend([model_response["embedding"]])
|
||||
token_count += num_tokens_from_string(text)
|
||||
|
||||
return np.array(embeddings), token_count
|
||||
|
||||
def encode_queries(self, text):
|
||||
|
||||
embeddings = []
|
||||
token_count = num_tokens_from_string(text)
|
||||
if self.model_name.split('.')[0] == 'amazon':
|
||||
body = {"inputText": truncate(text, 8196)}
|
||||
elif self.model_name.split('.')[0] == 'cohere':
|
||||
body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}
|
||||
|
||||
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
|
||||
model_response = json.loads(response["body"].read())
|
||||
embeddings.extend([model_response["embedding"]])
|
||||
|
||||
return np.array(embeddings), token_count
|
||||
|
||||
|
@ -144,4 +144,6 @@ cn2an==0.5.22
|
||||
roman-numbers==1.0.2
|
||||
word2number==1.1
|
||||
markdown==3.6
|
||||
mistralai==0.4.2
|
||||
boto3==1.34.140
|
||||
duckduckgo_search==6.1.9
|
||||
|
@ -145,4 +145,6 @@ cn2an==0.5.22
|
||||
roman-numbers==1.0.2
|
||||
word2number==1.1
|
||||
markdown==3.6
|
||||
mistralai==0.4.2
|
||||
boto3==1.34.140
|
||||
duckduckgo_search==6.1.9
|
||||
|
@ -130,4 +130,6 @@ cn2an==0.5.22
|
||||
roman-numbers==1.0.2
|
||||
word2number==1.1
|
||||
markdown==3.6
|
||||
mistralai==0.4.2
|
||||
boto3==1.34.140
|
||||
duckduckgo_search==6.1.9
|
||||
|
Loading…
x
Reference in New Issue
Block a user